Exploiting Opportunistic Scheduling in Cellular Data Networks

Radmilo Racic, Denys Ma
Hao Chen, Xin Liu

University of California, Davis
3G Cellular Networks

• Provide high speed downlink data access
• Examples
 – HSDPA (High Speed Downlink Packet Access)
 – EVDO (Evolution-Data Optimized)
• Approach: exploring multi-user diversity
 – Time-varying channel condition
 – Location-dependent channel condition
• Opportunistic scheduling
 – Embracing multi-user diversity
TDM (Time Division Multiplexing)

- Base station use TDM to divide channels into time slots
- TTI (Transmission Time Interval)
 - HSDPA: 2 ms
 - EVDO: 1.67 ms
Opportunistic Scheduling

• Assumptions
 – Phones’ channel conditions fluctuate independently
 – But some varying set of phones may have strong channel conditions at any moment

• Opportunistic scheduling
 – Phones measure and report their CQIs (Channel Quality Indicators) to base station periodically
 – Base station schedules a phone with good channel condition
Proportional Fair (PF) Scheduler

• Motivation: strike a balance between throughput and fairness in a single cell
• Goal: maximize the product of the throughput of all users
PF Algorithm

Base station schedules

\[\arg \max_i \frac{CQI_i(t)}{R_i(t)} \]

\(CQI_i(t) \): Instantaneous channel condition of user \(i \)

\(R_i(t) \): Average throughput of user \(i \), often calculated using a sliding window

\[
R_i(t) = \begin{cases}
\alpha CQI_i(t) + (1 - \alpha)R_i(t-1) & \text{if } i \text{ is scheduled} \\
(1 - \alpha)R_i(t-1) & \text{otherwise}
\end{cases}
\]
PF Vulnerabilities

• Base station does not verify phone’s CQI reports
 – Attack: malicious phones may fabricate CQI
• PF guarantees fairness only within a cell
 – Attack: malicious phones may exploit hand offs
• Design flaw: cellular networks trust cell phones for network management
Attacks

• Goal: malicious phones hoard time slots
• Two-tier attacks
 – Intra-cell attack: exploit unverified CQI reports
 – Inter-cell attack: exploit hand off procedure
• We studied attack impact via simulation
Threat Model

• Assumptions
 – Attackers control a few phones admitted into the network, e.g.:
 • Via malware on cell phones
 • Via pre-paid cellular data cards
 – Attackers have modified phones to report arbitrary CQI and to initiate hand off
• We do not assume that attacker hacks into the network
Intra-cell Attack

• Assumption: attacker knows CQI of every phone (we will relax this assumption later)

• Approach: at each time slot, attackers
 – Calculate $CQI_i(t)$ required to obtain max $\frac{CQI_i(t)}{R_i(t)}$
 – Report $CQI_i(t)$ to base station
Results from Intra-cell Attack

![Graph showing the relationship between the number of attackers and timeslots occupied.](image-url)
Inter-cell Attack
Results from Inter-cell Attack

![Graph showing the relationship between the number of attackers per cell and the percentage of timeslots occupied. The graph indicates an increase in timeslots occupied as the number of attackers increases.]
Attack without Knowing CQIs

- **Problem**
 - Attack needs to calculate $\max_i \frac{CQI_i(t)}{R_i(t)}$
 - But attacker may not know the every phone’s $\frac{CQI_i(t)}{R_i(t)}$

- **Solution:** estimate $c(t) = \max_i \frac{CQI_i(t)}{R_i(t)}$

\[
c(t + 1) = \begin{cases}
 c(t)/(1 - \varepsilon) & \text{if attacker is scheduled} \\
 c(t)/(1 + \sigma(c(t) - 1)) & \text{otherwise}
\end{cases}
\]
Results from Unknown CQI Attack

![Graph showing timeslots occupied vs. attackers per cell]

- Timeslots Occupied
- Attackers per Cell

18,072 (100%)
14,458 (80%)
10,843 (60%)
7,229 (40%)
3,614 (20%)
0 (0%)
CQI Prediction Accuracy
Attack Impact on Throughput

• Before attack
 – 40-55 kbps

• After attack (1 attacker, 49 victim users)
 – Attacker: 1.5M bps
 – Each victim user: 10-15 kbps
Attack Impact on Average Delay

• Before attack
 – 0.01s between two consecutive transmissions
• After attack (in a cell of 50 users)
 – One attacker causes 0.81s delay
 – Five attackers cause 1.80s delay
• Impact: disrupt delay-sensitive data traffic
 – E.g.: VoIP useless if delay > 0.4s
Attack Detection

• Detect anomalies in
 – Average throughput
 – Frequency of handoffs

• Limitations
 – Difficult to determine appropriate parameters
 – False positives
Attack Prevention

• Goal: extend PF to enforce global fairness during hand-off
• Approach: estimate the initial average throughput in the new cell
• Estimate average throughput as:

\[R = E(CQI) \frac{G(N)}{N} \]

- \(E(CQI) \): expectation of \(CQI \)
- \(G(N) \): opportunistic scheduling gain
- \(N \): number of users
Attack Prevention (cont.)

\[
\frac{R_B}{R_A} = \frac{E(CQI_B) \frac{G(N_B)}{N_B}}{E(CQI_A) \frac{G(N_A)}{N_A}} \approx \frac{G(N_B)}{G(N_A)} \frac{N_B}{N_A}
\]
Related Work

- Attacks on scheduling in cellular networks
 - Using bursty traffic [Bali 07]
- Other attacks on cellular networks
 - Using SMS [Enck 05] [Traynor 06]
 - Attacking connection establishment [Traynor 07]
 - Attacking battery power [Racic 06]
Conclusion

• Cellular networks grant unwarranted trust in mobile phones
• We discovered vulnerabilities in PF scheduler
 – Malicious phone may fabricate CQI reports
 – Malicious phone may request arbitrary handoffs
• Attack can severely reduce bandwidth and disrupt delay-sensitive applications
• Propose to enforce global fairness in PF to prevent attack