About Instructor

- Dr. Peng Ning, associate professor of computer science
 - http://www.csc.ncsu.edu/faculty/ning
 - pning@ncsu.edu
 - (919) 513-4457
 - Office: 3258 EB II, centennial campus
 - Office hours:
 - Tuesdays and Thursdays, 9:45am – 10:45am

About TA

- Attila Yavuz
 - aayavuz@ncsu.edu
- Office hours:
 - Time: 2pm -- 4pm on Mondays
 - Location: Room 3240 EB II
Course Objectives

• Understanding of fundamental issues, concepts, principles, and mechanisms in network security (beyond CSC 574).
 – Network security primitives
 – Electronic payment systems
 – Broadcast authentication
 – Group key management
 – Security of ad-hoc networks

• Prepare for graduate research in network security

Prerequisites

• You must have taken
 – CSC 570
 – CSC 574
• Or convince the instructor that you have enough background knowledge

Text

• No required textbook
• Research papers listed on the course website
Course Mechanics

• Slides will be provided
• But be prepared to
 – Take notes, and
 – Work in class
• WWW page:
 – For course materials, e.g., slides, homework files, papers, tools, etc.
 – Will be updated frequently
• Message board at
 – http://courses.ncsu.edu/csc774/
 – For discussions, Q&As
 – TA will answer questions there regularly

Grading

• Assignments: 10%;
• Midterm #1: 25%;
• Midterm #2: 25%;
• Lab: 10%
 – WiSeNeT – A wireless sensor network testbed
• Research/survey paper: 20%;
• In-class presentation: 10%
 – Duration TBD
 – On a technical paper assigned by the instructor.

Grading (Cont’d)

• The final grades are computed according to the following rules:
 – A+: >= 95%; A: >= 90% and < 95%; A-: >= 85% and < 90%;
 – B+: >= 80% and < 85%; B: >= 75% and < 80%; B-: >= 70% and < 75%;
 – C+: >= 66% and < 70%; C: >= 63% and < 66%; C-: >= 60% and < 63%;
 – D+: >= 56% and < 60%; D: >= 53% and < 56%; D-: >= 50% and < 53%;
 – F: < 50%
• Audit students:
 – No in-class presentation;
 – No research paper;
 – Grade will be adjusted by grade = grade/0.6;
 – Need grade >=63% to pass.
Course Outline

• Topic 1: Course Introduction
 – Overview of the course contents
 – Review basic security concepts

Course Outline (Cont’d)

• Topic 2: Network security basics
 – Absolute basics
 – Hash-based primitives
 – Secret sharing
 – Rabin’s information dispersal algorithms
 – Secret handshake
 – ID-based cryptography

Course Outline (Cont’d)

• Topic 3: Electronic Payment Systems
 – Electronic billing systems
 • NetBill
 • Micropayments
 • PayWords and MicroMints
 – Fair Exchange Protocols
 • Optimistic fair exchange protocol
Course Outline (Cont’d)

• Topic 4: Broadcast Authentication
 – EMSS
 • Based on signature amortization
 – TESLA
 • Based on hash chain and delayed disclosure of symmetric keys
 – BiBa
 • Based on collision of hash functions
 – Broadcast authentication in sensor networks
 • Remote programming of sensors – an illustrating application
 • Basis of the lab

Course Outline (Cont’d)

• Topic 5: Group Key Management
 – Group key agreement
 • Group Diffie-Hellman (GDH) protocols
 • Tree-based GDH
 – Group key distribution
 • Iolus
 • Logical Key Hierarchy (LKH)
 – AKA key graph

Course Outline (Cont’d)

• Topic 6: Security of Ad-Hoc Networks
 – Random key pre-distribution in sensor networks
 – Secure and resilient localization
 – Secure and resilient time synchronization
 – Actual coverage depends on availability of time
Course Outline (Cont’d)

- Advanced Topics
 - Recent advances in network security
- Every student is responsible for presenting one technical paper in class, and managing a discussion forum in the message board
 - Will be graded. Instructions and grading policy is posted on the course website
 - Students are encouraged to write research papers related to these topics

What’s behind these Topics

- Efficient use of cryptography
 - Public key cryptography
 - Symmetric cryptography
 - One-way hash chains
 - Merkle hash trees
 - Cryptographic puzzles
- Non-crypto techniques

In-class Presentation

- Duration TBD
- Will be graded
 - See the grading sheet on course website
Research/Survey Paper

- Small team -- at most two students per group
- Proposal, work, and final write-up
- Both the proposal and the final submission will be graded
 - Proposal due: 3/18/08
 - Final submission due: midnight EST, 04/29/08
- Grading policy is posted on the course website
- The instructor will be available to discuss your topic during the office hours
- You should start thinking about your team and topic now

Check the website for details!

A Brief Review of Basic Security Concepts
Security Objectives

- **Secrecy** (Confidentiality) — Prevent/detect/deter improper disclosure of information
- **Integrity** — Prevent/detect/deter improper modification of information
- **Availability** — Prevent/detect/deter improper denial of access to services provided by the system

A Fourth Objective

- Securing computing resources — Prevent/detect/deter improper use of computing resources including
 - Hardware Resources
 - Software resources
 - Data resources
 - Network resources
Achieving Security

- Security policy — What?
- Security mechanism — How?
- Security assurance — How well?

Security Policy

Organizational Policy

Automated Information System Policy

Compusec + Comsec = Infosec
Security Mechanism

- Prevention — Access control
- Detection — Auditing and intrusion detection
- Tolerance — Practicality

Good prevention and detection both require good authentication as a foundation

Security Mechanism

- Security mechanisms implement functions that help prevent, detect, and respond to security attacks
- Prevention is more fundamental
 - Detection seeks to prevent by threat of punitive action
 - Detection requires that the audit trail be protected from alteration
- Sometimes detection is the only option, e.g.,
 - Accountability in proper use of authorized privileges
 - Modification of messages in a network
- Security functions are typically made available to users as a set of security services through APIs or integrated interfaces
- Cryptography underlies (almost) all security mechanisms

Security Services

- Confidentiality: protection of any information from being exposed to unintended entities.
 - Information content.
 - Parties involved.
 - Where they are, how they communicate, how often, etc.
- Authentication: assurance that an entity of concern or the origin of a communication is authentic - it’s what it claims to be or from
- Integrity: assurance that the information has not been tampered with
Security Services - Cont’d

- Non-repudiation: offer of evidence that a party is indeed the sender or a receiver of certain information
- Access control: facilities to determine and enforce who is allowed access to what resources, hosts, software, network connections
- Monitor & response: facilities for monitoring security attacks, generating indications, surviving (tolerating) and recovering from attacks

Security Services - Cont’d

- Security management: facilities for coordinating users’ service requirements and mechanism implementations throughout the enterprise network and across the internet
 - Trust model
 - Trust communication protocol
 - Trust management infrastructure

Security Assurance

- How well your security mechanisms guarantee your security policy
- Everyone wants high assurance
- High assurance implies high cost
 - May not be possible
- Trade-off is needed.
Security Tradeoffs

| Security | Functionality | Ease of Use | COST |

Threat-Vulnerability-Risk

- Threats — Possible attacks on the system
- Vulnerabilities — Weaknesses that may be exploited to cause loss or harm
- Risk — A measure of the possibility of security breaches and severity of the ensuing damage
- Requires assessment of threats and vulnerabilities