Basic Idea

- Use identity as the key for encryption and signature verification.
 - No key directory needed.
- Trusted key generation center (KGC)
 - Give each user a smart card when user first joins the network.
 - Each user uses the secret key in smart card for decryption and signature verification.
 - KGC can be closed after all cards are issued.

Basic Idea (Cont’d)
Basic Idea (Cont’d)

Security
- The security of underlying cryptographic functions.
- The secrecy at KGC.
- Identity check before issuing cards to users.
- The loss, duplication and unauthorized use of cards.

Implementation of Signature Scheme
- KGC chooses three public parameters. The factorization of \(n \) is only known by KGC.
 - \(n = p \cdot q \), \(p \) and \(q \) are large primes
 - \(e \), which is relatively prime to \(\phi(n) \)
 - \(f \), which is one way function
- The secret key corresponding identity \(i \) is \(g \)
 - \(g^e = i \pmod{n} \)
 - KGC can compute \(g \) easily. Why?
 \[
 ed \equiv 1 \pmod{\phi(n)}
 \]
 \[\implies f - (g^e)^f \pmod{n} = g\]
Signature Generation and Verification

- Signature generation
 1. Choose random number r
 2. $t = r^e \pmod{n}$
 3. $s = g \cdot r^{f(t,m)} \pmod{n}$
 4. Signature is (t, s)

- Signature verification
 $g^e = i \cdot t^{f(t,m)} \pmod{n}$
 $g^e = g^e \cdot r^e \cdot f(t,m) \pmod{n}$

Misc

- Multiplicative relationship between the identities will introduce same relationship between secret key.
 - Expand identity to pseudo-random string

- r cannot be reused or revealed