Topic 3.1: NetBill

Outline

- Why is NetBill developed?
- NetBill Transaction Model
- NetBill Transaction Protocol
 - Basic Protocol
 - Optimizations for zero-priced goods
- Failure Analysis

E-Commerce over the Internet

- Internet is attractive for e-commerce
 - Search for suppliers
 - Price negotiation
 - Ordering
 - Payment for goods
 - Delivery of information goods
 - Software, electronic books, etc.
- Challenges
 - No easily identifiable places of business
 - Transactions are subject to observation by their parties
 - Privacy
NetBill

- NetBill is a system developed to facilitate selling and delivery of low-priced information goods over the Internet.
 - Maintain accounts for customers as well as merchants, which are linked to banks
 - Transfer information goods from merchant to customer
 - Transfer money from customer’s account to merchant’s account.
 - Combine small transactions into larger conventional transactions, reducing transaction cost.

NetBill Transaction Model

- Three phases
 - Phase 1: Price negotiation
 - Phase 2: Goods delivery
 - Phase 3: Payment

NetBill Transaction Objectives

- Only authorized customers can charge against a NetBill account
- The customer and merchant must agree on the purchase item and the price
- A customer can optionally protect her identity from merchants
- Customers and merchants are provided with proof of transaction results from NetBill
- There is a negotiation phase between customer and merchant
- A customer may present credentials identifying her for special treatment
- A customer receives the goods if and only if she is charged for the goods
- A customer may need approval from a fourth party before the NetBill server will allow a transaction.
- The privacy and integrity of communications is protected from observation or alteration by external parties.
NetBill Transaction Protocol

• The basic protocol
 – Phase 1: price negotiation
 • C ⇒ M: price request
 • M ⇒ C: price quote
 – Phase 2: goods delivery
 • C ⇒ M: goods request
 • M ⇒ C: goods, encrypted with a key K
 – Phase 3: payment
 • C ⇒ M: signed electronic payment order (EPO)
 • M ⇒ N: endorsed EPO (including K)
 • N ⇒ M: signed result (including K)
 • M ⇒ C: signed result (including K)

Notations

• $T_{CM}(Id)$: Kerberos ticket proving to Y that X is named by Id, and establish a session key XY shared between them.
• $CC(M)$: cryptographic checksum of M.
• $E_K(M)$: M encrypted using key K.
• $E_{X-PUB}(M)$: M encrypted using X’s RSA public key.
• $E_{X-PR}(M)$: M signed using X’s RSA private key.
• $[M]_X$: M signed (with RSA) and timestamped by X.
• $[M]_{X-DSA}$: M signed and timestamped by X with DSA.
• ${M}_X$: M encrypted for X using RSA.

The Price Request Phase

1. C ⇒ M: $T_{CM}(Id)$, E_{CM}(Credentials, PRD, Bid, RequestFlags, TID)
2. M ⇒ C: E_{XM}(ProductID, Price, RequestFlags, TID)

• $T_{CM}(Id)$: prove the identity of the customer
• Credentials: establish the customer’s membership
• PRD: product description
• RequestFlags:
 – Message 1: request for the disposition of the transaction (e.g., Delivery method)
 – Message 2: merchant’s response to customer’s request
• TID:
 – Message 1: if this is a repeated request
 – Message 2: if this is not supplied by the customer
The Goods Delivery Phase

3. \(C \Rightarrow M: T_{\text{Md}}(\text{Id}), E_{\text{Md}}(\text{TID}) \)
4. \(M \Rightarrow C: E_{\text{K}}(\text{Goods}), E_{\text{Md}}(\text{CC}(E_{\text{K}}(\text{Goods})), \text{EPOID}) \)

- M sends to C
 - An encrypted version of the goods
 - The cryptographic checksum of the encrypted goods
 - EPOID: electronic purchase order ID.
 - Merchant ID + a timestamp (delivery time) + a serial number
- Intuition:
 - Reduce the transaction to a fair exchange of K and the payment from C.
 - This fair exchange depends on the NetBill server.

The Payment Phase

5. \(C \Rightarrow M: T_{\text{Md}}(\text{Id}), E_{\text{Md}}([\text{EPO}]_{C}) \)

- EPO consists of
 - Clear part:
 - C’s ID, Product ID, Price, M’s ID
 - CC(E_{K}(\text{Goods})), CC(\text{PRD}), CC(\text{C acct}, \text{AcctVN})
 - EPOID
 - Encrypted part:
 - \(T_{\text{M}}(\text{TrueID}) \)
 - \(E_{\text{CN}}(\text{Authorization, C acct, AcctVN, Cmemo}) \)

The Payment Phase (Cont’d)

6. \(M \Rightarrow N: T_{\text{M}}(\text{M}), E_{\text{Md}}([\text{EPO}]_{C}, \text{M acct}, \text{MMemo}, \text{K}_{C}) \)

- The merchant endorse and submit the EPO
 - M acct: Merchant’s NetBill account
 - MMemo: merchant’s memo field
 - K: the key used to deliver the goods
- Point of no return
 - The merchant cannot reverse the transaction.
The Payment Phase (Cont’d)

7. $N \Rightarrow M: E_{MN}(\{\text{Receipt}\}, E_{CN}(\text{EPOID}, \text{CAcct}, \text{Bal}, \text{Flags}))$

- The NetBill server makes decision based on verification of
 - The signatures
 - Privileges of the users involved
 - Customer’s account balance
 - Uniqueness and freshness of the EPOID

- Receipt
 - Result, Identity, Price, ProductID, M, K, EPOID
 - The signed receipt certifies the transaction

The Payment Phase (Cont’d)

8. $M \Rightarrow C: E_{CM}(\{\text{Receipt}\}, E_{CN}(\text{EPOID}, \text{CAcct}, \text{Bal}, \text{Flags}))$

- Merchant forwards NetBill server’s response to customer
 - M needs to decrypt and re-encrypt

Status Query Exchange

- Needed when there is communication failure

 The merchant requests the transaction status from NetBill

 1. $M \Rightarrow N: T_{MN}(\text{Id}, E_{MN}(\text{EPOID}))$
 2. $N \Rightarrow M: E_{MN}(\{\text{Receipt}\}, E_{CN}(\text{EPOID}, \text{CAcct}, \text{Bal}, \text{Flags}))$

 The customer requests the transaction status from the merchant

 1. $C \Rightarrow M: T_{CM}(\text{Id}, E_{CM}(\text{EPOID}))$
 2. $M \Rightarrow C: E_{CM}(\{\text{Receipt}\}, E_{CN}(\text{EPOID}, \text{CAcct}, \text{Bal}, \text{Flags}))$
Status Query Exchange (Cont’d)

The customer requests the transaction status from NetBill

1. \(C \Rightarrow N: T_{CS}(\text{TrueId}), E_{CN}(\text{EPOID}) \)
2. \(N \Rightarrow C: E_{CN}([\text{Receipt}]_{\text{NetBill}}, E_{CN}(\text{EPOID}, \text{CAcct, Bal, Flags})) \)

The customer requests the transaction status from the merchant for a non-NetBill transaction

1. \(C \Rightarrow M: T_{CM}(\text{Id}), E_{CM}(\text{EPOID}) \)
2. \(M \Rightarrow C: E_{CM}(\text{Result, K}) \)

Zero-Priced Goods

- Protocol can be simplified
- Four variations
 - Type indicated in \(\text{RequestFlags} \) in the price request message
 - Zero-price certified delivery
 - Certified delivery without NetBill server
 - Verified delivery
 - Unverified delivery

Zero-Price Certified Delivery

1. \(C \Rightarrow M: T_{CS}(\text{Identn}, E_{CS}(\text{Credentials, PRD, Bid, RequestFlags, TID})) \)
2. \(M \Rightarrow C: E_{CS}(\text{ProductID, Price=0, RequestFlags, TID}, E_{CS}(\text{CAcct, EPOID})) \)
3. \(C \Rightarrow M: T_{CM}(\text{Identn}, E_{CM}(\text{EPOID})) \)
4. \(M \Rightarrow N: E_{CS}(\text{Receipt} || \text{FPA, CAcct, Bid, Flags}) \)
5. \(N \Rightarrow M: E_{CS}(\text{Receipt} || \text{FPA, CAcct, Bid, Flags}) \)

Price negotiation can be omitted.

But delivery must be certified by NetBill.
Certified Delivery without NetBill

1. \(C \rightarrow M \quad T_{CM}(Identity), E_{CM}(Credentials, PRD, Bid, RequestFlags, TID) \)

2/4. \(M \rightarrow C \quad E_{CM}(ProductID, Price=0), RequestFlags, TID, E_{C}(Goods), ECM(CCM(E_{C}(Goods), EPOID)) \)

5. \(C \rightarrow M \quad T_{CM}(Identity), E_{CM}(EPOID, CCE_{C}(Goods)) \)

8. \(M \rightarrow C \quad E_{CM}(Result, K) \)

- No need to go through NetBill.
- But C cannot recover if M decides not to send message 8.

Verified Delivery

1. \(C \rightarrow M \quad T_{CM}(Identity), E_{CM}(Credentials, PRD, Bid, RequestFlags, TID) \)

2/4. \(M \rightarrow C \quad E_{CM}(ProductID, Price=0), RequestFlags, TID, Goods, CC(Goods), EPOID \)

5. \(C \rightarrow M \quad T_{CM}(Identity), E_{CM}(EPOID, CC(Goods)) \)

8. \(M \rightarrow C \quad E_{CM}(Result) \)

- Goods is encrypted with shared session key.
- C doesn’t have to wait for K.

Unverified Delivery

1. \(C \rightarrow M \quad T_{CM}(Identity), E_{CM}(Credentials, PRD, Bid, RequestFlags, TID) \)

2/4. \(M \rightarrow C \quad E_{CM}(ProductID, Price=0), RequestFlags, TID, Goods, CC(Goods)) \)

- Eliminate the acknowledgement of goods delivery.
Failure Analysis

• Customer complaints
 – Incorrect or damaged goods
 • Can be resolved with the EPO, which contains a cryptographic checksum of the encrypted goods
 – Cannot deal with false advertisement
 – No decryption key
 • Can be resolved by a status query exchange with the NetBill server

Failure Analysis (Cont’d)

• Transaction dispute
 – Inconsistent price
 • Can be resolved by checking the EPO signed by the customer
 – Fraudulent transactions
 • Same resolution as above.

Failure Analysis (Cont’d)

• Merchant Complaints
 – Insufficient payment
 • Can be resolved by checking the receipt signed by NetBill
Identification and Authentication

- **Public key based Kerberos**
 - Each entity has public/private key pair with a certificate for the public key
 - Public key certificate is used to obtain a Kerberos server ticket

1. \(C \rightarrow M \ [\{ \text{Identity, M, Timestamp, K} \}_M] \)
2. \(M \rightarrow C \ E_K(T_{CM} \{\text{Identity}, \text{CM}\}) \)

Privacy protection

- **Pseudonym mechanism**
 - Implemented through a pseudonym-granting server \(P \).
 - Two methods
 - Per transaction
 - Use a unique pseudonym for each transaction
 - Per merchant
 - Use a unique pseudonym for each customer-merchant pair

Authorization

1. \(C \rightarrow A \ T_{CA}(\text{Identity}), E_{CA}(M, \text{ProductID}, \text{Price}, \text{CC}(E_{K}(\text{Goods})), \text{EPOID, CAccct}) \)
2. \(A \rightarrow C \ E_{CA}(E_{A, PKG}(\text{CC}(\text{Identity, M, ProductID, Price, CC(E_{K}(\text{Goods}), EPOID, CAccct})) \)

- Performed through an access control server \(A \).
 - Message returned by \(A \) is used as the authorization token in an EPO.