Outline

- Micropayment systems
 - Make small purchase over the Internet
- Two simple micropayment schemes
 - PayWord
 - MicroMint

PayWord and MicroMint

- Main goal
 - Minimize the number of public key operations
 - Use hash operations instead whenever possible
 - Hash functions are
 - 100 times faster than RSA signature verification
 - 10,000 times faster than RSA signature generation
PayWord

• Overview
 – Credit based scheme
 – Based on chains of paywords (hash values)
 – Broker gives a certificate to user to allow him/her to make paywords
 – User authenticates a complete chain to the vendor with a single public-key signature
 – User successively reveals each payword in the chain to make micropayment
 – Vendor gets money through broker.

PayWord (Cont’d)

• User-Broker relationship
 – User U establishes an account with broker B
 • Credit card number, expiration date, etc.
 – Broker B gives user U a certificate
 • Expiration date
 • Credit limit per vendor
 • Contact information of broker B
 • …
 – The certificate:
 • B will redeem authentic paywords produced by U turned in before the given expiration date.
 • Essentially allows U to produce paywords.

PayWord (Cont’d)

• User-Vendor relationships
 – Randomly choose \(w_0 \) and compute the paywords
 – User U sends Vendor V her commitment
 \[M = \{ V, C_U, w_0, D, I_M \}_{SK_U} \]
 – Commitment is vendor-specific and user-specific

\(h \) : one-way hash function

\[
\begin{align*}
W_0 &\leftarrow W_i \\
W_j &\leftarrow W_i \\
W_k &\leftarrow W_i \\
W_{l} &\leftarrow W_i \\
\end{align*}
\]
PayWord (Cont’d)

• Payment
 – A payment P from U to V
 – $P = (w_i, i)$
 – U spends her paywords in order
 – Variable-size payment
 • Example: U has just paid $(w_3, 3)$. What should U send to V if she wants to pay 3 more cents?
 • $(____, _____)$

PayWord (Cont’d)

• Vendor-Broker relationship
 – For each User U, Vendor V needs to send Broker B
 • The commitment M
 • The last payment $P = (w_l, l)$ received from U
 – Broker verifies M and each payment $P = (w_l, l)$
 – Questions:
 • What’s the cost of verifying $P = (w_l, l)$?
 • What property(ies) of the hash function is used in PayWord?

MicroMint

• Overview
 – No public key operations
 – For unrelated low-value payments
 – Broker produces MicroMint coins
 • A coin is a bit string whose validity can be checked by anyone
 – Users purchase the coins
 – Users give the coins to vendors as payments
 – Vendors return coins to broker in turn for payments by other means.
MicroMint (Cont’d)

- Coins
 - Each coin is represented by a k-way collision that has distinct x_i’s.
 - The number of x-values that must be examined before one expects to see the first k-way collision is approximately
 \[2^{n(k-1)/k}, \]
 where n is the number of bits in y.

- Minting coins
 - Equivalent to throwing balls into 2^n bins
 - Randomly select x, and compute $y=h(x)$.
 - Throw approximately $k*2^n$ balls
 - Roughly $1/2$ of the bins have at least k balls.

- Question: If there are more than k x’s in the same bin, can we make more than one coin out of it?
 - __________________

- Balance computational and storage requirements
 - Good coins: a coin is good only when the high-order t bits are equal to a given value.
 - Reduce the storage requirements
 - Slow down the generation process
 - Tosses $k*2^n$ balls, but get $(1/2)*2^{n-t}$ coins.
MicroMint (Cont’d)

- Selling coins
 - Broker B remembers what coins User U gets
- Making payments
 - Vendor V can verify each coin
- Redemption
 - Vendor returns the coins to the broker
 - Broker checks coins and pays the vendor
 - Only pay for coins that have not been previously returned.

MicroMint (Cont’d)

- Double spending
 - Broker can detect doubly-spent coin
 - Broker can identify from which vendors he received such coins
 - Broker can link the doubly-spent coins with each user