Outline

• Overview of Fair Exchange
• Optimistic Fair Exchange
 – A General Protocol
 – Optimized Protocol
 • Contract signing
• Self-study
 – Optimized Protocols
 • Certified mail
 • Payment for receipt
 • Fair purchase

Fair Exchange

• A fair exchange should guarantee that at the end of the exchange
 – Either each party has received what it expects to receive,
 – Or no party has received anything
• Examples
 – Certified mail
 – Contract signing
 – Payment
Traditional Fair Exchange

- ISO proposals
 - Use a TTP to ensure fairness
- Limitations
 - TTP is heavily involved
 - Bottleneck
 - Single point of failure

Optimistic Fair Exchange

- Assumptions
 - Most participants are honest
- Allow participants to exchange without TTP
- Fall back to TTP when there are failures
 - Dishonest participants, communication failures, etc.

Three Phases of Optimistic Fair Exchange

- Phase 1
 - The parties try to exchange items without a TTP
- Phase 2
 - The parties try to exchange items through a TTP
- Phase 3
 - Each computer outputs all evidence and any participant may visit a court
Degree of Fairness

- Strong (true) fairness
 - If the TTP is able to
 - Undo a transfer of an item (revocability)
 - Example: revoke a signed contract
 - Produce a replacement for it (Generatability)
 - Example: generate a replacement of a receipt
- Weak fairness
 - If the TTP can only produce affidavits
 - Requires an external dispute resolution system
 - Example: court

Generic Exchange Protocol

- Two stages
 - Stage 1 (Two flows)
 - The originator O and the recipient R promise each other
 an exchange of items
 - Stage 2 (Three flows)
 - Exchange the items along with non-repudiation tokens

Notations

- \(\text{item}_x\): the item \(X\) wants to send
- \(\text{descr}_x\): a description of \(\text{item}_x\)
- \(\text{expect}_x(\text{descr}_x, \text{descr}_y)\):
 - Evaluate to true if \(X\) is satisfied with exchanging \(\text{item}_x\) with \(\text{item}_y\).
- \(\text{fits}(\text{descr}, \text{item})\):
 - Evaluate to true if the description fits the item
- \(h()\): hash function
- \((\text{key}, \text{comm}) = \text{commit}(\text{item})\)
 - Generate a commitment \(\text{comm}\) to \(\text{item}\), and also generate a
 \(\text{key}\), without which it’s impossible to get the item.
 - Verifiable encryption.
- \(\text{open}(\text{item}, \text{key}, \text{comm})\)
 - Use \(\text{key}\) to open the \(\text{item}\) whose commitment is \(\text{comm}\).
Generic Exchange Protocol (Cont’)

O **T** **R**

In: \(\text{item}_O, \text{descr}_O, \text{expect}_O\)

Choose \(y_O\) (recovery authenticator)
\(r_O\) (NRR authenticator)
randomly; determine \(T\)
\((\text{key}_O, \text{com}_O) := \text{commit} (\text{item}_O)\)

\(m_1 := \text{sign}_O(T, R, \text{key}_O, \text{com}_O, \text{descr}_O)\)

If not \(\text{expect}_R(\text{descr}_R, \text{descr}_O)\)
then:

Choose \(y_R\) (recovery authenticator)
\(r_R\) (NRR authenticator)
randomly;
\((\text{key}_R, \text{com}_R) := \text{commit} (\text{item}_R)\)

\(m_2 := \text{sign}_R(T, \text{key}_R, \text{com}_R, \text{descr}_R)\)

\(m_3 := \text{sign}_O(O, \text{key}_O, \text{com}_O, \text{descr}_O)\)

\(m_4 := \text{sign}_R(O, \text{key}_R, \text{com}_R, \text{descr}_R)\)

If \([\text{fits}(\text{descr}_R, \text{item}_R)]\) and \([\text{open}(\text{item}_R, \text{key}_R, \text{com}_R)]\)
and \([\text{no timeout}]\) then:

\(m_5 := r_O\)

If \([\text{timeout}]\) then:

[Recovery for R]
Else [Recovery for O]

Output:

NRO Token: \((m_1, \text{key}_O, \text{com}_O)\)
NRR Token: \((m_1, m_2, r_O)\)

Output:

NRO Token: \((m_1, \text{key}_O, \text{com}_O)\)
NRR Token: \((m_1, m_2, r_O)\)

Question:

- Why can these tokens guarantee NRO or NRR?
Recovery for O

If [the received messages fit together] then
 retransmit m_3, observable by T

If [retransmit invalid] then abort
 else if not [timeout] then
 retransmit m_4, observable by T
 open $(item_R, key_R, com_R)$?
 fits $(item_R, descr_R)$?
 m_5
 else
 $m_T := sign_T(h(m_~))$

Question

• Can this recovery protocol guarantee
 – Strong fairness for O?
 – Weak fairness for O?

Recovery for R

If [the received messages fit together] then
 retransmit m_3, observable by T

open $(item_R, key_R, com_R)$?
 fits $(item_R, descr_R)$?
 m_5
else
 $m_T := sign_T(h(m))$
Question

• Can this recovery protocol guarantee
 – Strong fairness for R?
 •
 – Weak fairness for R?
 •

Types of items

• Confidential data
 – Data that will be released during the protocol
 – Example: Software
• Public data
 – Data that will be released even if the protocol execution fails
 – Purpose: fair exchange of non-repudiation tokens.
 – Example: contract
• Payments
 – A payment sub-protocol that is executed to transfer value from payer to payee
 – Example: PayWords

Types of Items (Cont’d)

• Generatable
 – The TTP can produce a replacement of the item
• Revocable
 – The TTP can undo the transfer of the item

<table>
<thead>
<tr>
<th></th>
<th>Public Data</th>
<th>Conf. Data</th>
<th>Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generatable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revocable</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exchange Types

<table>
<thead>
<tr>
<th>Public Data</th>
<th>Conf. Data</th>
<th>Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract Signing</td>
<td>Certified Mail</td>
<td>Payment with Receipt</td>
</tr>
<tr>
<td>Conf. Data</td>
<td>Exchange of Goods</td>
<td>Fair Purchase</td>
</tr>
<tr>
<td>Payment</td>
<td>Currency Exchange</td>
<td></td>
</tr>
</tbody>
</table>

Optimized Protocol -- Contract Signing

In: contract_O

Choose t_O randomly; determine T

m_1 := sign_T(T, R, h(t_O), t, contract_O)

Choose t_R randomly; contract_R = contract_O

m_2 := sign_R(h(m_1), h(t_R))

m_T := h(t_O)

m_3 := m_2

m_2

Contract Signing (Cont'd)

If [timeout] then

m_T := m_1, m_2, t_R

If [the received messages fit together] then

m_T := m_1

If [response] then

m_T := m_3

else

m_T := sign_T(h(m_1))
<table>
<thead>
<tr>
<th>O</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>contract _P (m_P, m_R)</td>
<td>contract _P (m_P, o_Q)</td>
</tr>
</tbody>
</table>

Question:
- Why can these tokens guarantee NRO or NRR?