CSC 774 Advanced Network Security

Dr. Peng Ning
pning@ncsu.edu
http://www.csc.ncsu.edu/faculty/ning

About Instructor

• Dr. Peng Ning, associate professor of computer science
 – http://www.csc.ncsu.edu/faculty/ning
 – pning(at)ncsu.edu
 – (919) 513-4457
 – Office: 3258 EB II, centennial campus
 – Office hours:
 • Tuesdays and Thursdays, 3:45pm – 4:45pm
 • Or by appointment

About TA

• Mr. Attila Yavuz
 – aayavuz@ncsu.edu
 – Office hours
 • Mondays 3pm—5pm
 • 3240 EB II
Course Objectives

• Understanding of fundamental issues, concepts, principles, and mechanisms in network security (beyond CSC 574).
 – Network security primitives
 – Electronic payment systems
 – Broadcast authentication
 – Group key management
 – Security of ad-hoc networks
 – Security of virtual cloud computing (new this semester)
• Prepare for graduate research in network security

Prerequisites

• You must have taken
 – CSC 570
 – CSC 574
• Or convince the instructor that you have enough background knowledge

Text

• No required textbook
• Research papers listed on the course website
Course Mechanics

- Slides will be provided
- But be prepared to
 - Take notes, and
 - Work in class
- WWW page:
 - For course materials, e.g., slides, homework files, papers, tools, etc.
 - Will be updated frequently
- Message board at
 - http://courses.ncsu.edu/csc774/
 - For discussions, Q&As
 - TA will answer questions there regularly

Grading

- Assignments: 10%;
- Midterm #1: 25%;
- Midterm #2: 25%;
- Lab: 10%
 - WiSeNeT – A wireless sensor network testbed
 - VCL – virtual cloud computing
- Research/survey paper: 20%;
- In-class presentation: 10%
 - Duration TBD
 - On a technical paper assigned by the instructor.

Grading (Cont’d)

- The final grades are computed according to the following rules:
 - A+: >= 95%; A: >= 90% and < 95%; A-: >= 85% and < 90%;
 - B+: >= 80% and < 85%; B: >= 75% and < 80%; B-: >= 70% and < 75%;
 - C+: >= 66% and < 70%; C: >= 63% and < 66%; C-: >= 60% and < 63%;
 - D+: >= 56% and < 60%; D: >= 53% and < 60%; D-: >= 50% and < 53%;
 - F: < 50%
- Audit students:
 - No in-class presentation;
 - No research paper;
 - Grade will be adjusted by grade = grade/0.7;
 - Need grade >=63% to pass.
Course Outline

• Topic 1: Course Introduction
 – Overview of the course contents
 – Review basic security concepts

Course Outline (Cont’d)

• Topic 2: Network security basics
 – Absolute basics
 – Hash-based primitives
 – Secret sharing
 – Rabin’s information dispersal algorithms
 – Rabin’s fingerprinting algorithm
 – Secret handshake
 – ID-based cryptography

Course Outline (Cont’d)

• Topic 3: Electronic Payment Systems
 – Electronic billing systems
 • NetBill
 • Micropayments
 – Fair Exchange Protocols
 • Optimistic fair exchange protocol
 – Illustration of efficient crypto in real applications
Course Outline (Cont’d)

• Topic 4: Broadcast Authentication
 – EMSS
 • Based on signature amortization
 – TESLA
 • Based on hash chain and delayed disclosure of symmetric keys
 – BiBa
 • Based on collision of hash functions
 – Broadcast authentication in sensor networks
 • Remote programming of sensors -- an illustrating application
 • Basis of one lab

Course Outline (Cont’d)

• Topic 5: Group Key Management
 – Group key agreement
 • Group Diffie-Hellman (GDH) protocols
 • Tree-based GDH
 – Group key distribution
 • Iolus
 • Logical Key Hierarchy (LKH)
 – AKA key graph

Course Outline (Cont’d)

• Topic 6: Security of Ad-Hoc Networks
 – Random key pre-distribution in sensor networks
 – Secure and resilient localization
 – Secure and resilient time synchronization
Course Outline (Cont’d)

• Topic 7. Security in Virtual Cloud Computing
 – Security threats in virtual cloud computing
 – Isolation in virtual cloud computing

Course Outline (Cont’d)

• Advanced Topics
 – Recent advances in network security
• Every student is responsible for presenting one technical paper in class, and managing a discussion forum in the message board
 – Will be graded. Instructions and grading policy is posted on the course website
 – Students are encouraged to write research papers related to these topics

What’s behind these Topics

• Efficient use of cryptography
 – Public key cryptography
 – Symmetric cryptography
 • One-way hash chains
 • Merkle hash trees
 • Cryptographic puzzles
• Non-crypto techniques
In-class Presentation

- Duration TBD
- Will be graded
 - See the grading sheet on course website

Research/Survey Paper

- Small team -- at most two students per group
- Proposal, work, and final write-up
- Both the proposal and the final submission will be graded
 - Proposal due: 3/17/09
 - Final submission due: midnight EST, 04/30/09
- Grading policy is posted on the course website
- The instructor will be available to discuss your topic during the office hours
- You should start thinking about your team and topic now

Check the website for details!
A Brief Review of Basic Security Concepts

Security Objectives

- Secrecy — Prevent/detect/deter improper disclosure of information
- Integrity — Prevent/detect/deter improper modification of information
- Availability — Prevent/detect/deter improper denial of access to services provided by the system
A Fourth Objective

• Securing computing resources — Prevent/detect/deter improper use of computing resources including
 – Hardware Resources
 – Software resources
 – Data resources
 – Network resources

Achieving Security

• Security policy — What?
• Security mechanism — How?
• Security assurance — How well?
Compusec + Comsec = Infosec

Security Mechanism

- Prevention — Access control
- Detection — Auditing and intrusion detection
- Tolerance — Practicality

Good prevention and detection both require good authentication as a foundation

Security Mechanism

- Security mechanisms implement functions that help prevent, detect, and respond to security attacks
- Prevention is more fundamental
 - Detection seeks to prevent by threat of punitive action
 - Detection requires that the audit trail be protected from alteration
- Sometime detection is the only option, e.g.,
 - Accountability in proper use of authorized privileges
 - Modification of messages in a network
- Security functions are typically made available to users as a set of security services through APIs or integrated interfaces
- Cryptography underlies (almost) all security mechanisms
Security Assurance

- How well your security mechanisms guarantee your security policy
- Everyone wants high assurance
- High assurance implies high cost
 - May not be possible
- Trade-off is needed