Topic 2.3 Secret Sharing

Secret Sharing

- **Objective**
 - Divide data D into n pieces D_1, \ldots, D_n in such a way that
 - Knowledge of any k or more D_i pieces makes D easy to compute,
 - Knowledge of any $k-1$ or fewer D_i pieces leaves D completely undetermined.
 - Such a scheme is called a (k, n) threshold scheme.

- **Useful when no single entity can be trusted with the secret**
 - Management of cryptographic keys

Shamir’s Secret Sharing

- **Underlying fact**
 - Based on polynomial interpolation.
 - Given k points in the 2-d plane $(x_1, y_1), \ldots, (x_k, y_k)$ with distinct x_i’s,
 - there is one and only one polynomial $q(x)$ of degree $k-1$ such that
 $$q(x_i) = y_i$$ for all i.

Shamir’s Secret Sharing (Cont’d)

• Split the secret D
 – To divide D into pieces D_i …
 – Pick a random k - 1 degree polynomial
 \[q(x) = a_0 + a_1x + \ldots + a_{k-1}x^{k-1} \]
 in which \(a_0 = D \).
 – Evaluate \(D_1 = q(1), D_2 = q(2), \ldots, D_n = q(n) \).
 – The secret shares represent distinct points on the polynomial.

Shamir’s Secret Sharing (Cont’d)

• Reconstruction
 – Given any subset of k of these D_i values (with their identifying indices)
 • Find the coefficients of q(x) by interpolation,
 • Evaluate D = q(0).
 – Given just k – 1 of these values,
 • D could be any value
 • In other words, D being any value will give one and only one possible polynomial
 • Alternatively, view these as linear equations.