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ABSTRACT
Recent studies have demonstrated that it is possible to per-
form public key cryptographic operations on the resource-
constrained sensor platforms. However, the significant re-
source consumption imposed by public key cryptographic
operations makes such mechanisms easy targets of Denial-
of-Service (DoS) attacks. For example, if digital signatures
such as ECDSA are used directly for broadcast authenti-
cation without further protection, an attacker can simply
broadcast forged packets and force the receiving nodes to
perform a large number of unnecessary signature verifica-
tions, eventually exhausting their battery power. This paper
studies how to deal with such DoS attacks when signatures
are used for broadcast authentication in sensor networks.
In particular, this paper presents two filtering techniques,
a group-based filter and a key chain-based filter, to handle
DoS attacks against signature verification. Both methods
can significantly reduce the number of unnecessary signature
verifications that a sensor node has to perform. The analyt-
ical results also show that these two techniques are efficient
and effective for resource-constrained sensor networks.
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1. INTRODUCTION
A wireless sensor network typically consists of a large

number of resource-constrained sensor nodes and possibly a
few powerful control nodes (called base stations) [1]. These
nodes usually communicate and collaborate with their neigh-
bor nodes through low-power wireless links, and provide fine-
grained sensing of physical conditions (e.g., temperature)
from their immediate surroundings. The unique features of
sensor networks lead to many attractive applications, such
as target tracking and battlefield surveillance.

Many applications require sensor networks to operate cor-
rectly even in hostile environments. Security thus becomes a
critical requirement for network protocols. Due to the sheer
number of sensor nodes and the broadcast nature of wire-
less links, it is often desirable for a base station to broadcast
commands and data to the network. The authenticity of
such commands and data is critical for the correct opera-
tion of sensor networks. If convinced to accept forged or
modified commands and data, sensor nodes may perform
unnecessary and incorrect operations, and cannot fulfill the
intended purposes of the network.

There are in general two types of solutions for broadcast
authentication in sensor networks, µTESLA [19] and digital
signature [5]. µTESLA and its variations achieve broad-
cast authentication through delayed disclosure of authenti-
cation keys. Its efficiency is based on the fact that only
symmetric cryptographic operations are needed to authen-
ticate a broadcast message. Despite the efficiency, µTESLA
has some undesirable features such as the need for (loose)
time synchronization and the authentication delay.

Recent studies have demonstrated that it is possible to
perform public key cryptographic operations on resource-
constrained sensor platforms [5]. In addition, there have
been continuous efforts to optimize Elliptic Curve Cryptog-
raphy (ECC) for sensor platforms [12, 22, 14]. We thus
believe that ECC-based signature schemes will also be an
attractive option for broadcast authentication in many ap-
plications. However, the significant resource consumption
imposed by public key cryptographic operations makes such
mechanisms easy targets of Denial-of-Service (DoS) attacks.



For example, if ECDSA is used directly for broadcast au-
thentication without further protection, an attacker can sim-
ply broadcast forged packets and force the receiving nodes
to perform a large number of unnecessary signature verifi-
cations, eventually exhausting their battery power.

Note that receiving packets also consumes the energy on
sensor nodes. Hence, an adversary can also launch DoS at-
tacks by sending many bogus packets to jam the channel
and exhaust the energy on the victim nodes. However, this
is significantly less efficient than the DoS attacks against
signature verification. Suppose every packet has 102 bytes
payload [8]. A MICAz mote will transmit 133 bytes in the
physical layer [21], which will cost the receiving node about
133 × 8/250, 000 = 4.256ms to receive. On the other hand,
verifying a 40-byte ECDSA signature takes about 1.96 sec-
onds [22]. As indicated in [3], an active MICAz CPU will
cost about two fifth of the energy of receiving packets for
the same period of time. This indicates that the DoS at-
tacks against signature verification is about 184 times more
efficient than the simple jamming attack.

In this paper, we propose to apply pre-authentication fil-
ters to remove bogus messages before the actual signature
verification is performed. Specifically, we develop two fil-
tering techniques, a group-based filter and a key chain-based
filter, to help sensor nodes avoid performing many unneces-
sary signature verifications. Both methods take advantage
of the fact that broadcast in sensor networks is usually done
through a network-wide flooding protocol, and a broadcast
message from a sensor node usually has a small number of
immediate receivers due to the low-power, short-range radio
used in wireless sensor networks.

The proposed pre-authentication filters provide comple-
mentary capabilities in dealing with DoS attacks against
signature-based broadcast authentication. The group-based
filter organizes the neighbor nodes of a (local) sender into
multiple groups, which are protected by different keys or-
ganized in a tree structure. Using these group keys, this
mechanism not only facilitates the neighbor nodes to filter
out forged messages, but also helps the sender adaptively
isolate compromised nodes that launch DoS attacks. Unfor-
tunately, the group-based filter allows compromised nodes
to send forged messages before they are isolated.

The key chain-based filter employs a two-layer method,
completely preventing compromised neighbor nodes from af-
fecting benign ones. The first layer uses one-way key chains
to mitigate the DoS attacks against signature verification,
and the second layer uses pairwise keys to mitigate the DoS
attacks on the verification of the chained keys in the first
layer. However, despite the advantage in tolerating compro-
mised nodes, the key chain-based filter defers to the group-
based filter in the ability to tolerate packet losses.

Our analytical results show that both group-based and
key chain-based filters can efficiently and effectively thwart
the DoS attacks on signature verification.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses system and adversary models. Section 3
presents the proposed filtering techniques for signature ver-
ification in sensor networks. Section 4 reviews related work
on sensor network security. Section 5 concludes this paper
and points out several future research directions.

2. SYSTEM AND ADVERSARY MODELS
In this paper, we assume that a sensor node is able to do

public key cryptographic operations such as signature gen-
eration and verification once for a while. We assume that
a public key crypto-system such as ECC [5] has been em-
ployed in the network, and broadcast authentication is sim-
ply achieved by digitally signing every broadcast message.
We consider a simple case of broadcast authentication where
a base station needs to broadcast messages to the entire net-
work in an authenticated manner. In addition, the keying
materials (i.e., the public key) needed for signature verifica-
tion have been distributed to all nodes in the network. The
main design goal in this paper is to effectively mitigate the
DoS attacks against signature verification.

An attacker can launch a wide range of attacks against the
network. For example, he can simply perform DoS attacks
to block the wireless channel. Such DoS attacks are simple
but common to the protocols in sensor networks; there are
no effective ways to stop an attacker from mounting such
attacks. This paper thus focuses on the attack whose goal is
simply to fool sensor nodes to perform a significant number
of unnecessary signature verifications. We assume that the
attacker can eavesdrop, modify, forge, replay or block any
network traffic. We also assume that the attacker can com-
promise a few sensor nodes and learn all the secrets (e.g.,
cryptographic keys) on the compromised nodes [6].

3. PRE-AUTHENTICATION FILTERS
As we discussed earlier, when digital signatures such as

ECDSA are used for broadcast authentication, an adver-
sary can forge signatures and fool sensor nodes to perform a
substantial number of expensive but unnecessary signature
verifications. To deal with such DoS attacks, we propose
to use hop-by-hop pre-authentication filters to remove bogus
messages before verifying the actual digital signatures.

We develop two filtering techniques, a group-based filter
and a key chain-based filter. Both methods take advantage
of the fact that broadcast in sensor networks is usually done
by a network-wide flooding protocol [11, 18], and a flood-
ing message from a sensor node only has a small number
of receivers due to the low-power, short-range radio. Since
both filters are independent from the broadcast protocol, we
simply assume a flooding scheme for broadcast and will not
discuss how it is achieved. We will focus on the situation
where a sensor node needs to re-broadcast a digitally signed
message to its neighbors.

3.1 Group-Based Filter
A simple method to filter out forged messages is to au-

thenticate the broadcast message, in a “hop-by-hop” man-
ner, with a (local) group key shared among a (local) sender
and its neighbor nodes. As a result, an adversary will not
be able to forge messages without compromising the group
key. However, sensors could be captured [6], which allows
an adversary to forge as many messages as he wants using
the group key on the compromised nodes. Alternatively, a
sensor node can add a message authentication code (MAC)
to a broadcast message for each of its neighbor nodes. How-
ever, this incurs large communication overhead even for a
moderate neighbor size.

The above two simple ideas represent two extreme cases.
One achieves high efficiency (only one MAC for every mes-
sage), but is vulnerable to a single compromised neighbor;
the other achieves high security, but introduces high com-
munication overhead. In this subsection, we present a group-
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Figure 1: Example of key trees when m = 2 and L = 2. Assume neighbor size b = 24

based method to trade-off communication efficiency with se-
curity. Specifically, every sender divides its neighbor nodes
into multiple groups. Every group uses a group key for pre-
authentication filtering. When a group key becomes suspi-
cious, we divide the corresponding group into smaller groups
to isolate suspicious nodes.

3.1.1 Protocol Description
The group-based filter consists of three steps: initializa-

tion, broadcasting, and re-keying. In the first step, a (local)
sender pre-loads keying materials to its neighbor nodes. In
the second step, the sender re-broadcasts authenticated mes-
sages. In the last step, the sender re-selects keys dynamically
to deal with compromised neighbor nodes.

In this paper, we assume the existence of a pairwise key
establishment protocol in the network. This protocol can
help every pair of sensor nodes to setup a secret key to pro-
tect their communication. A number of key pre-distribution
protocols can be used for our purpose [4, 2, 13]. We let Ku,v

denote the shared pairwise key between nodes u and v. We
assume that each node can add m MACs into a broadcast
message, where each MAC is q-bit long.

Initialization: For each sender node u, let N(u) be
the set of its neighbors. u first divides N(u) into m equal-
sized groups, {g1, ..., gm}. We assume each group gi has
s nodes. For each gi, we further divide it into 2L equal-
sized sub-groups, called unit groups, where L is a system
parameter that determines the number of bits allocated for a
unit group for filtering purposes. (Indeed, it is q

2L bits). For
example, in Figure 1, we have two groups g1 = {1, 2, ..., 12}
and g2 = {13, 14, ..., 24}. Each of them is further split into
4 unit groups with 3 nodes in each unit group.

For each gi, we construct a full binary tree Ti from the
2L unit groups with each leaf representing a unit group.
Each node in Ti is assigned a unique and random key. The
resulting tree is called the key tree. (In total, we have m
key trees for every sender.) The keying materials for each
neighbor in group gi includes the keys on the path from the
corresponding unit group to the root of key tree Ti. For
example, in Figure 1, node 16 belongs to g2 and has three
keys K16−18, K13−18 and K13−24.

Each key k in the j-th level of Ti defines a level-j group,
which includes all nodes that know this key. Hence, every
gi is a level-1 group, and every unit group is a level L + 1

group. Let l(k) be the level number of the group defined by
key k in its key tree. The key tree Ti is used for filtering the
messages sent to the nodes in gi. We only use a subset Ai

of the keys in Ti for filtering. This set, called active key set,
is initialized as only including the root of Ti, and adjusted
(in the third step) based on the suspiciousness of the nodes
in gi. In general, every path from a leaf to the root covers
exactly one key in this set. The purpose is to make sure that
every node in gi will be able to find a piece of information
in Ai to filter out forged messages. For example, in Figure
1, A2 = {K13−18, K19−21, K22−24}. This key set is picked
because K13−24 and K19−24 were reported to be suspicious.
We can see that every path from a leaf to the root of T2

includes exactly one key in the A2.
Broadcasting: Assume node u has received an authenti-

cated, digitally signed message M , and needs to re-broadcast
it according to the flooding protocol. u will add m commit-
ment values to this message, one for each group gi. The
commitment values are generated as follows.

Consider a given group gi. For every k ∈ Ai, node u
computes a commitment fragment, which is the first q

2l(k)

bits of H(k||M), where H is a one-way hash function and
“||” is the concatenation operation. The fragments gener-
ated from all the keys in Ai are then concatenated together,
producing a complete commitment value for the nodes in
gi. The overall length of this commitment value will be
the same as the length of a MAC. For example, in Figure
1, A2 = {K13−18 , K19−21, K22−24}. If q = 64, the cor-
responding commitment value includes the first 32 bits of
H(K13−18||M), the first 16 bits of H(K19−21||M), and the
first 16 bits of H(K22−24||M). Let W be the set of all the
commitment values (there are m of them) generated from
all key trees. Node u will simply broadcast {M, W}.

Suppose a neighbor v in group gi receives {M, W}. It will
first identify the fragment in W that is generated based on
a key k it knows. The information needed for identification
can be easily obtained from u, as we will show in the third
step. If the fragment is the same as the first q

2l(k) bits of

H(k||M), node v will do the actual signature verification;
otherwise, it will ignore the message.

When the signature verification succeeds, node v extracts
M and returns M to the sensor application for various uses.
For example, it may also decide to relay M based on the



flooding protocol. When the signature verification fails,
node v checks if the number of failed signature verifications

exceeds a threshold τ during the last w = 2
q

2L forged mes-
sages, i.e., the messages that failed either pre-authentication
filtering or signature verification. (We will discuss why we
set w in this way in our later analysis.) If so, node v believes
that k is suspicious. In this case, if l(k) < L + 1, node v
will stop accepting any message from u and also notify u
to adjust the corresponding active key set. If l(k) = L + 1,
v will stop processing the next w messages from u before
returning to normal.

Re-Keying: When the sender u receives a report that
the key k of Ti is suspicious, if the level number l(k) < L+1,
it will use the two keys corresponding to key k’s two child
nodes to replace key k in the active key set Ai. In other
words, u splits the level l(k) group defined by k into two
smaller groups to isolate suspicious nodes. For example, in
Figure 1, if K13−18 is found to be suspicious, we will use
K13−15 and K16−18 to replace K13−18 in A2. Sender u will
also notify the affected neighbors about the splitting so that
they are able to identify the correct fragments in a broadcast
message for pre-authentication filtering.

3.1.2 Security Analysis
In our approach, a sensor node will not verify the signa-

ture unless the corresponding fragment is valid. When none
of the sender u and the nodes in N(u) is compromised, an
adversary has to guess the keys on the roots of key trees.
Given the hardness of inverting a one-way hash function, we
know that it is computationally infeasible for the attacker to
bypass pre-authentication filtering. This prevents the adver-
sary from mounting DoS attacks against any of the sensor
nodes in N(u).

We now focus on the security when there are compromised
sensor nodes. We will study the security of our approach
in the following two cases: (1) the sender is benign, and
(2) the sender is compromised. After the analysis, we will
summarize some important conclusions about the proposed
approach.

The group-based approach has many system parameters
that need to be configured properly. The configuration of
these parameters will be discussed during the analysis.

Security under Benign Sender: Consider a benign
node u that receives an authenticated message and needs to
re-broadcast it according to the flooding protocol. Assume
that the adversary has compromised Nc nodes in N(u). We
note that if a level L + 1 key is compromised, the adver-
sary can forge messages with correct fragments and disable
the broadcast authentication at the sensor nodes who share
such key. We are thus interested in how many benign neigh-
bors will be affected by compromised neighbors. That is, the
number of benign neighbors that from time to time stop
processing messages relayed by sender u.

Note that the most effective way of attacking our protocol
is to make sure that the compromised nodes belong to dif-
ferent unit (level L+1) groups since a single malicious node
in a unit group can disable the broadcast authentication of
the nodes in this group. Hence, the number of benign nodes
affected is no more than

Nc × (
s

2L
− 1) (1)

For example, when L = 2 and s = 8, the attacker can only
affect no more than Nc benign neighbors. In addition, the
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Figure 2: Probability pr v.s. τ . Assume q = 64.

attacker has to continuously launch such attack since oth-
erwise these affected nodes will return to normal situation
after w messages from u. We also note that the number of
affected benign nodes can be reduced by having a smaller
s or larger L. However, having a small s leads to a larger
m, and therefore more communication overhead. Having a
larger L will reduce the security of our approach since the
adversary is able to force nodes to do more unnecessary ver-
ifications, as we will see next.

When there are compromised neighbor nodes, it is possible
that some non-compromised level L + 1 keys are used for
pre-authentication filtering. When a benign node v is using
a non-compromised level L + 1 key for pre-authentication
filtering, we are interested in the probability of an adversary
bypassing pre-authentication filtering. Since the length of a
commitment fragment for a level L + 1 key is q

2L -bit long,
this probability can be estimated by

pf =
1

2
q

2L

(2)

Equation 2 shows that a larger L may result in more un-
necessary signature verifications at those benign nodes. For
example, suppose q = 64, when L = 3, we have pf = 1

256
≈

0.0039; when L = 4, we have pf = 0.0625. Together with
Equation 1, we may want to find the largest value L that
meets the required pf .

When v uses a non-compromised level L + 1 key for pre-
authentication filtering, we are also interested in how likely
v will stop processing messages from u when the adversary
forges messages. This is equivalent to the probability pr of
the adversary bypassing pre-authentication filtering τ times

in a window of w = 2
q

2L forged messages. This probability
can be estimated by

pr = 1 −
τ
X

i=0

 

w

i

!

(
1

w
)i(

w − 1

w
)w−i (3)

Figure 2 shows that pr decreases quickly with τ . Indeed,
a small τ will make it very difficult for an attacker to disable
the broadcast authentication at any benign node that has
a non-compromised level L + 1 key. We also note that the
value of L does not affect such probability much, making
it much easier for us to configure threshold τ . This also



explains our configuration of w in the protocol description.
There is a small probability that an adversary can dis-

able the pre-authentication filter at a node with a non-
compromised level L + 1 key. However, this node will con-
tinue the protocol after w messages from the sender, which
makes the attacker’s job much harder. We can thus conclude
that the adversary cannot gain much benefit by attacking
those having non-compromised level L + 1 keys.

Security under Compromised Sender: When the
sender u is compromised, it can certainly forge broadcast
messages with correct commitment values. We consider the
worst case scenario where the sender u keeps forging broad-
cast messages but the number of failed verifications in any

window of 2
q

2L forged messages is always no more than τ .
In this case, obviously, all the neighbor nodes will keep pro-
cessing the messages from node u and verifying the corre-
sponding signatures. Fortunately, due to threshold τ , we can
clearly see that the fraction pf of forged messages that will
lead to unnecessary signature verifications is always bounded
by

pf =
τ

2
q

2L

(4)

For example, when q = 64, L = 3 and τ = 3, we have
pf = 0.012. We can see that our group-based approach can
effectively mitigate the DoS attacks launched by a compro-
mised sender given a reasonable setting of parameters.

Summary: First of all, whenever a benign node receives
a true broadcast message from a benign sender, it will never
miss this true message as long as the pre-authentication filter
is not disabled due to a compromised neighbor node in the
same level L + 1 group. The impact of compromised nodes
is given by Equation 1. For the forged messages comes from
an adversary who may compromised the sender and some
neighbor nodes, we have the following theorem.

Theorem 1. The fraction of forged messages that can
lead to unnecessary signature verifications at a benign node
is no more than

(1 − fc)
s

2L
−1

+ τ × [1 − (1 − fc)
s

2L
−1

]

2
q

2L

,

where fc is the fraction of compromised sensor nodes.

Proof. Note that the size of a level L + 1 group is s

2L .
Hence, for a given neighbor node, the probability that the
sender and all other nodes in the same level L + 1 group

are benign can be estimated by (1 − fc)
s

2L
−1

. In this case,
the fraction of forged messages that will lead to unnecessary
signature verifications is given by Equation 2. When either
the sender or one of the nodes in the same level L+1 group is
compromised, the fraction of forged messages that will lead
to unnecessary signature verifications is given by Equation
4. Overall, the fraction of forged messages that will lead to
unnecessary signature verifications at a benign node is no
more than

(1 − fc)
s

2L
−1

+ τ × [1 − (1 − fc)
s

2L
−1

]

2
q

2L

.

Theorem 1 indicates the security of our group-based ap-
proach in dealing with the DoS attacks against signature
verification. Since L, s and τ are usually quite small, we can

see that our group-based filter can effectively defeat the DoS
attacks against signature verification. For example, when
L = 3, s = 16, τ = 3, q = 64 and fc = 0.1, the fraction of
forged messages leading to unnecessary verifications is only
about 0.0047.

3.1.3 Overheads
According to the protocol description, every sensor node

needs to store a set of key trees (as a sender), and L + 1
keys for every neighbor (as a receiver). Since the keys on
each key tree can be derived from a random seed, they only
need one master key. Hence, the storage overhead can be
estimated by b × (L + 1) × q bits, where b is the average
neighbor size in the network.

The communication overhead introduced by our protocol
comes from three parts: (1) the distribution of keying mate-
rials in the initialization, (2) the reports from every neighbor
node indicating unsafe keys and the notifications to neigh-
bor nodes indicating the change of active key sets, and (3)
the space needed for the commitment values in broadcast
messages. The distribution of keying materials only hap-
pens during the initialization; it only involves the delivery
of L + 1 keys for every neighbor nodes and only needs to
be done once for each neighbor. For the reports and no-
tifications, we note that they are done between neighbors
and the number of messages is usually limited. Hence, the
main communication overhead introduced is the additional
m MACs on every broadcast message.

We use MICAz motes to show the energy consumption for
the additional MACs. With the 250kbps data rate and 3.0V
power level, MICAz will keep the current draw at no more
than 17.4mA in TX mode and 19.7mA in RX mode [3].
Assume m = 8 and q = 64. The energy cost of sending
the additional MACs can be estimated as 3.0 × 17.4 × 64 ×
8/250, 000 = 0.107mJ, and the energy cost of receiving can
be estimated as 3.0 × 19.7 × 64 × 8/250, 000 = 0.121mJ.
On the other hand, the current draw of an active MICAz
CPU is 8mA [3]. As discussed before, verifying an ECDSA
signature takes about 1.96s on MICAz motes. Thus, the
energy cost of a signature verification can be estimated as
3.0×8×1.96 = 47.04mJ, which is about 400 times more than
the energy cost of sending or receiving the additional MACs.
This clearly explains the benefit of our filtering method.

According to the protocol description, each sender needs
to do up to m × 2L additional hash operations on average.
For each receiver, it needs to perform one additional hash
operation to verify the corresponding fragment.

3.1.4 Extension: Adaptive Re-Grouping
Our previous analysis indicates that we usually prefer a

small L to make sure that an adversary cannot fool sensor
nodes to perform many unnecessary signature verifications.
However, we also mentioned that a smaller L will make it
possible for a single compromised sensor node to disable the
broadcast authentication at more benign nodes.

In the following, we present an adaptive re-grouping exten-
sion to deal with compromised neighbor nodes and provide
more flexibility in configuring parameter L. The basic ob-
servation is that benign nodes will always report suspicious
keys in the key trees to the sender. This provides evidence
for the sender to reason about the suspiciousness of neighbor
nodes. The sender can then rank and group neighbor nodes
according to the suspiciousness, making sure that a benign



neighbor is likely to be in the same group with other benign
neighbors and a compromised neighbor is likely to be in the
same group with other compromised neighbors. Achieving
this will makes it much more difficult for an adversary to
impact benign sensor nodes.

Adaptive Re-Grouping: We focus on level L+1 keys.
When a level L + 1 key is found to be unsafe, all nodes
having this key are suspicious. We consider them as equally
suspicious. A sensor node will send a report to the sender
when its level L+1 key is found to be unsafe. The adaptive
re-grouping protocol works as follows.

The sender u maintains a boolean variable c(i) for every
neighbor node i ∈ N(u), indicating if this neighbor node
is suspicious. Initially, we have c(i) = FALSE for every
i ∈ N(u). Whenever the sender u receives a report from its
neighbor node i saying that its level L + 1 key is suspicious,
node u will set c(j) = TRUE for every neighbor node j in
the same level L + 1 group as node i.

The sender u periodically re-groups neighbor nodes. Dur-
ing each round of re-grouping, node u first classifies all cur-
rent level L+1 groups into two categories: the first category
includes those with non-suspicious level L + 1 keys, and the
second category includes those with suspicious level L + 1
keys. This classification can be done using the boolean vari-
ables {c(i)}i∈N(u). The sensor nodes in the second category
are then re-grouped randomly, and we expect that some of
these randomly organized level L + 1 groups only include
benign nodes so that they will be identified as benign with
a very high probability in the next round. In this way, we
will build more and more benign level L + 1 groups.

After re-grouping, sender u then re-generates random keys
for every key tree. After the assignment of new keys, we
will have new key trees for the new group construction. The
sender will then distribute new keying materials to neigh-
bor nodes and reset all the boolean values {c(i)}i∈N(u) to
FALSE.

Advantages: The total number of level L + 1 groups
can be estimated by G = m × 2L. Consider the moment
right before the i + 1-th re-grouping at sender u. Let mi be
the number of level L + 1 groups that include only benign
neighbors. For each of the groups, the probability of being
marked as suspicious after the i + 1-th re-grouping can be
estimated by Equation 3. Thus, on average, these mi groups
in the first category will contribute mi(1 − pr) to mi+1.

During the re-grouping, the sender will believe that there
are up to (G − mi(1 − pr)) suspicious level L + 1 groups.
Assume there are Nc compromised neighbors. After the i+1-
th re-grouping, the average number of level L + 1 groups in
the second category that include only benign nodes can be
estimated by

(G − mi(1 − pr))(
G − mi(1 − pr) − 1

G − mi(1 − pr)
)Nc .

Overall, after the i + 1-th re-grouping, the average number
of level L + 1 groups that include only benign sensor nodes
(mi+1) can be estimated by

mi(1 − pr) + (G − mi(1 − pr))(
G − mi(1 − pr) − 1

G − mi(1 − pr)
)Nc .

Figure 3 shows the performance of our re-grouping ap-
proach. We consider the worst scenario where the compro-
mised nodes belong to different level L + 1 groups. Hence,
m0 = G−Nc = m× 2L −Nc. Clearly, without re-grouping,
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Figure 3: Performance of adaptive re-grouping (L =
3, τ = 3 and m = 2).

the number of affected groups is Nc. With re-grouping, we
can clearly see from the figure that we significantly increase
the average number of unaffected level L + 1 groups.

Overheads: The proposed re-grouping idea does not add
much overhead to sensor nodes. Indeed, for every neighbor
node, it only needs to report at most one extra message and
get re-initialized after a certain period of time. There are
no other additional overheads for them. For the sender, it
needs to collect at most one report from each neighbor node
and re-initialize the keying materials after a certain period
of time. In addition, it needs to maintain a boolean value
for each level L + 1 group, re-organize category-2 groups,
and re-generate all keying materials. These additional steps
will not add too much cost for the sender.

3.2 Key Chain-Based Filter
Due to the usage of group keys in the previous method,

compromising a neighbor allows an attacker to bypass the
pre-authentication filter at many benign nodes and fool them
to do unnecessary verifications. This is one major issue for
the previous method. In the following, we give another pre-
authentication filter that doesn’t offer an adversary much
benefit by compromising neighbors.

Our main idea is to introduce an asymmetry property so
that a receiver (neighbor) can filter but not forge messages.
One-way key chains meet such requirement. A one-way key
chain {K1, ..., Kn} has the following property: from any Kj ,
all former keys can be derived by iteratively hashing this key
(Ki = Hj−i(Kj), 0 ≤ i < j), but none of the later keys can
be computed. The hash image of the first key K1 is called
the commitment of this key chain. With the commitment,
anybody can verify the authenticity of any later key by only
performing hash operations.

With one-way key chains, a simple pre-authentication fil-
ter (used by LHAP [25]) works as follows: the sender always
adds the next unreleased key in the key chain into a new
broadcast message. When a neighbor receives any message,
it will perform the actual signature verification only when
the chained key included in the message is found to be new to
this neighbor. A long key chain is often used to support net-
work operations continuously. However, an adversary may
claim a key close to the end of key chain and fool a node



to perform a large number of unnecessary hash operations,
causing a DoS attack.

We apply a two-layer filter to deal with the DoS attacks
on the verification of signatures and chained keys. The first
layer employs a one-way key chain to filter out fake signa-
tures, and the second layer uses existing pairwise keys to
prevent a node from doing a significant number of unneces-
sary hash operations. Our approach is different from LHAP
in that we have an additional layer of protection to stop
attacks on the verification of chained keys.

The main intuition of the second layer is to control the
number of hash operations used for verifying a chained key.
A receiver (neighbor) will verify a chained key only when ei-
ther the verification costs only a few hash operations or there
is additional evidence (i.e., a commitment value generated
from the shared key with the sender) about the authenticity
of the message. Our design guarantees that a receiver can
always find additional evidence in a small number of con-
secutive messages. Hence, when a receiver realizes that it
has to do many hash operations to verify the key, it chooses
to wait for additional evidence before doing the verification.
This significantly enhances the security against the DoS at-
tacks on the verification of chained keys since the attacker
has to guess the pairwise key and then forge the evidence.
After a successful verification, this receiver can immediately
catch up with the sender since it knows the most recently
released key in the key chain.

3.2.1 Protocol Description
The key chain-based filter consists of three steps, initial-

ization, broadcasting, and re-keying. We assume that every
node can add m MAC values and a sequence number into
every broadcast message, where each MAC value is q-bit
long.

Initialization: During the initialization, each node u first
discovers a set N(u) of neighbors and generates a one-way
key chain of length n: {K1, · · · , Kn}. It then distributes the
key chain commitment K0 = H(K1) to every v in N(u) via
a secure channel established by the pairwise key Ku,v.

Sender u also maintains a variable idx to record the index
of the next key in the key chain. Initially, we have idx = 1.
This variable decides which authentication key in the key
chain to use. In addition, u also organizes its neighbors into
disjoint groups and picks one group for use in every round
of broadcast authentication in a round-robin manner. These
groups are used in the second layer of pre-authentication
filter. For convenience, we call them layer-2 authentication
groups. The value of idx directly determines which group to
use for each broadcast message.

When a layer-2 authentication group is picked for a broad-
cast message, every node in this group can find additional
evidence (a commitment value) in the message to do the fil-
tering. Let l be the length of a commitment value. Since the
first layer filtering needs space for one key, we have q(m−1)

bits left for additional values. Hence, we can add q(m−1)
l

commitment values in a broadcast message. The size of an

authentication group is q(m−1)
l

(the last group may have
fewer nodes).

Broadcasting: Assume node u has received an authenti-
cated, digitally signed message M and needs to re-broadcast
it according to the flooding protocol. Node u will first con-
trol the broadcast rate. Specifically, it will ensure that there
will be no more than one true broadcast message from it-
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Figure 4: Example of the key chain-based approach.
Xj is the first l bits of H(M ||i||Ki||Ku,j).

self per T seconds on average, where T is a system param-
eter that determines the maximum frequency of relaying
digitally-signed broadcast messages.

After rate-controlling, node u will get the next key Kidx

from the key chain and compute a set W of commitment
values. To generate W , node u will first select the next
layer-2 authentication group based on index idx. For ev-
ery node v in this group, node u uses the first l bits of
H(M ||idx||Kidx||Ku,v) as the commitment value. The set
W includes all commitment values generated in this way.
Node u will then broadcast {M, idx, Kidx, W} and incre-
ment the variable idx by one.

Figure 4 shows an example of re-broadcasting an authen-
ticated, digitally-signed message M . In the example, node
u has seven neighbors {1, ..., 7}, which are organized into
three layer-2 authentication groups, {1, 2, 3}, {4, 5, 6} and
{7}. Node u first adds i and Ki to the message, and then
computes and adds the commitment values for the second
layer-2 authentication group {4, 5, 6} to the message. The
final broadcast packet includes M, i, Ki, and three commit-
ment values {X4, X5, X6}.

Suppose a neighbor node v receives {M, idx, Kidx, W}
from sender u. It first checks if W includes the commit-
ment value generated from the key Kv,u shared with sender
u. This checking can be easily done with the value idx in-
cluded in the message, since the sender u always picks a
layer-2 authentication group for use in a round-robin man-
ner. Let Ki be the chained authentication key that node v
stores in its memory. The result of this checking will lead to
the following two cases.

• If W does not include the commitment value generated
from the key Kv,u, node v will check whether 0 < idx−
i ≤ B, where B is a threshold value that determines
how many hash operations a node is willing to pay for
verifying a chained key. If not, node v will ignore the
message.

• If W does include the commitment value generated
from the key Kv,u, node v will first check whether the
included commitment value equals the first l bits of
H(M ||idx||Kidx||Kv,u). If not, node v will ignore the
message; otherwise, it will further check whether idx−
i > 0 (for freshness). If not, node v will ignore the
message.

Once the message has passed the above checking, node v



will verify the key Kidx using Ki. If such verification fails,
node v will check whether the verification of authentication
keys has failed more than τ times during the last 2l forged
messages that include the commitment value for node v. If
yes, node v will stop processing the next 2l messages from
node u before returning to normal.

When the verification of the chained key Kidx succeeds,
node v also checks whether the sender discloses chained keys
at a rate of no more than one key per T seconds. If not, node
v considers sender u as compromised and then removes u
from its neighbor set N(v). Otherwise, node v will perform
the actual signature verification and use the new key Kidx to
replace Ki. When the signature verification succeeds, node
v extracts M and returns M to the sensor application for
various uses. For example, it may also decide to relay M
based on the flooding protocol.

Re-Keying: After every round of re-broadcast, node u
will check whether idx >= n. If so, node u will generate
a new key chain and distribute the initial commitment of
the new key chain to every neighbor node. In addition, it
will also reset idx to 1. When a neighbor node receives
the updated key chain commitment, it will set its copy of
chained keys to this commitment for future authentication.

3.2.2 Security Analysis
In the key chain-based method, sensor nodes only verify

signatures in those messages that have passed our two-layer
filtering. Similar to the security analysis for the group-based
scheme, we will evaluate the security of the key chain-based
scheme in two cases: (1) the sender is benign, and (2) the
sender has been compromised. After security analysis, we
will also summarize some important conclusions.

The key chain-based approach has many system parame-
ters that need to be configured properly. The configuration
of these parameters will be discussed during the analysis.

Security under Benign Sender: When the sender is
benign, we first consider the first layer of pre-authentication
filtering, which is achieved by an one-way key chain. This
layer of pre-authentication filtering guarantees the following
property.

Lemma 1. Given a benign sender, the number of unnec-
essary signature verifications a benign receiver performs will
not exceed the number of true broadcast messages.

Proof. The freshness requirement of the chained key
guarantees that nobody can forge broadcast messages us-
ing undisclosed keys in the key chain. Thus, no matter how
many neighbor nodes are compromised, the total number
of failed signature verifications that a benign neighbor per-
forms will never exceed the total number of authentication
keys in the key chain. Since the sender is benign, the to-
tal number of unnecessary signature verifications a benign
neighbor node needs to do will never exceed the total num-
ber of true broadcast messages from the sender.

Lemma 1 clearly indicates that an adversary is not able to
convince any benign sensor node to do a significant number
of unnecessary signature verifications. However, as men-
tioned before, an adversary can fool a sensor node to do a
large number of unnecessary hash operations, causing a DoS
attack. In the following, we will study how our second layer
of pre-authentication filtering addresses this problem.

The second layer of pre-authentication filtering at sender

u appends commitment values for q(m−1)
l

neighbors in each

broadcast message. When a neighbor v receives a forged
broadcast message that does not include the commitment
for node v, it will perform no more than B hash operations
in verifying the chained key included in the message.

When the broadcast message does include the commit-
ment value for node v, the probability that the adversary
can successfully generate the correct commitment value is
1
2l . Node v will need to do one hash operation for an in-
correct commitment value and up to n + 1 hash operations
for a correct commitment value (one for verifying the com-
mitment value and n for verifying the chained key included
in the message). Thus, for those forged broadcast messages
that include the commitment values for node v, the average
number of additional hash operations that node v has to do
will not exceed 1 + n

2l . This tells us that we can simply set

n = (B − 1) × 2l to make sure that a benign neighbor node
will not perform more than B additional hash functions for
each forged message on average. For example, when l = 8
and B = 6, we can set n = 1, 280. As a result, in this paper,
we always set

n = (B − 1) × 2l (5)

Equation 5 also shows how to configure parameters B,
l and n. Parameter B usually needs to be large enough
to make sure that the non-malicious message loss will not
impact the protocol. In other words, a sensor node should be
able to receive at least one of any B consecutive messages
from a sender with a very high probability. We then set
parameter n based on the storage and computation costs
that a sender is willing to pay. For example, when n =
900, a sender can allocate space for 30 keys to save one key
per every 30 keys in the key chain, {K30, K60..., K900}, and
allocate space for 30 keys to save the keys for immediate
use, {K30j+1, K30j+2, ..., K30j+10}. As a result, the sender
will need to first generate the whole key chain (900 keys)
and then generate the other 870 keys again during the pre-
authentication filtering. Overall, the sender will allocate
space for 60 keys for the key chain, and perform no more
than two hash operations on average to find a key to use. In
general, the storage overhead to save a key chain of length
n is 2

√
n. After configuring B and n, we can easily set l.

We also note that when the sender is benign, the adver-
sary still has a small chance to bypass the second layer of
pre-authentication filtering by randomly guessing the com-
mitment value. If the number of messages that passed the
layer-2 filtering but failed the layer-1 filtering is larger than
τ during the last 2l forged messages that contain the com-
mitment value for a given sensor node, this node will stop
accepting messages from the sender. We are thus interested
in the probability pr that a benign sensor node stops accept-
ing any broadcast message from a benign sender. Since the
probability of the adversary making a correct guess of the
commitment value is about 2−l, the probability pr can be
estimated by

pr = 1 −
τ
X

i=0

 

2l

i

!

(
1

2l
)i(1 − 1

2l
)2

l−i (6)

Figure 5 shows that a small τ is sufficient to make pr very
low. Also note that l does not affect pr much. We can thus
easily configure τ to tolerate forged messages.
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Figure 5: Probability pr v.s. threshold τ .

Security under Compromised Sender: If the sender
u is compromised, it can always forge broadcast messages
with correct chained keys and commitment values. How-
ever, our approach can still effectively prevent a compro-
mised sender from launching DoS attacks against signature
verification by controlling the broadcast rate.

Lemma 2. In case of a compromised sender, the average
number of unnecessary signature verifications a benign node
needs to do will never exceed one per T seconds.

Proof. The proof of Lemma 1 indicates that the num-
ber of unnecessary signature verifications a benign neighbor
needs to do will never exceed the number of authentication
keys in the key chain. We also note that our approach con-
trols the rate of disclosing chained keys to one per T seconds.
Hence, the average number of unnecessary signature verifi-
cations a benign node needs to do will never exceed one per
T seconds even if the sender is compromised.

Lemma 2 shows that a compromised sender is not able to
convince any benign sensor node to do a significant number
of unnecessary signature verifications. However, a compro-
mised sender can fool a sensor node to perform a significant
number of unnecessary hash functions for a forged message.
Similarly, we will also study how our second layer of filtering
addresses this problem.

Similar to the case of a benign sender, when a sensor node
receives a forged broadcast message (from a compromised
sender) that does not include the commitment value for it-
self, it will perform no more than B hash operations in ver-
ifying the chained key included in the message.

However, when the broadcast message does include the
commitment value for the receiver, the adversary can al-
ways include a correct commitment since the compromised
sender knows all the keys. Fortunately, due to the threshold
τ , the compromised sender cannot force a benign node to
do more than n× τ additional hash operations in a window
of 2l forged messages that include the commitment of this
node. The reason is that once the number of messages that
failed the first layer filtering exceeds the threshold τ , the
neighbor node will stop accepting messages from the com-
promised sender. Since n is set to (B−1)×2l (Equation 5),
the average number of additional hash operations a benign
neighbor needs to do will not exceed

n × τ

2l
+ 1 = (B − 1) × τ + 1 (7)

Summary: First of all, whenever a benign sensor node
receives a true broadcast message from a benign sender, it
has a very high chance of being able to authenticate this
true message for a reasonable B. For the forged messages,
we have the following two theorems.

Theorem 2. On average, a benign sensor node will not
do more than one unnecessary signature verifications in ev-
ery T seconds for a given sender.

The above theorem can be easily derived by generalizing
Lemma 1 and Lemma 2. The detail of the proof will be thus
skipped for simplicity. This theorem indicates the security
performance of our key chain-based approach in dealing with
the DoS attacks on signature verification.

Theorem 3. The average number of additional hash op-
erations a benign sensor node needs to do is no more than
B(1 − fc) + [(B − 1)τ + 1]fc, where fc is the fraction of
compromised sensor nodes.

Proof. Note that when the sender is benign, the average
number of additional hash operations will not exceed B.
When the sender is compromised, the average number of
additional hash operations will not exceed (B−1)τ+1. Since
the probability of any given sensor node being compromised
is fc, the average number of additional hash operations a
benign sensor node needs to do will not exceed B(1− fc) +
[(B − 1)τ + 1]fc.

Theorem 3 indicates the security performance of our key
chain-based filter in dealing with the DoS attacks on the
verification of chained keys. Since B and τ are usually quite
small, we can see that our key chain-based filter can effec-
tively defeat this kind of DoS attacks.

3.2.3 Overheads
From the protocol description, any sensor node u needs to

store a one-way key chain (as a sender) and a key chain com-
mitment for every neighbor sender (as a receiver). Hence,
the overall storage overhead can be estimated by (b+2

√
n)×

q bits, where n is length of the key chain and b is the average
neighbor size.

The communication overhead includes two parts: (1) the
distribution of the key chain commitment, and (2) the space
for the chained key and the commitment values in every
broadcast message. Note that each key chain can be used
for n broadcast messages. We thus believe that the com-
munication overhead needed for distributing the initial key
chain commitment will not be a problem given a reasonably
long key chain. In addition, each broadcast message will
include m × q bits additional information (i.e., the chained
key and the commitment values).

For every broadcast message, a sender u will need to per-
form |W | hash operations for generating the commitment
values and an average of 2 hash operations for generating a
key in the key chain to use. On the receiver side, Theorem
3 shows the average number of additional hash operations
a benign sensor node needs to do. Overall, we can see that
the key chain-based method is also effective and efficient.



3.3 Discussion
The detailed analysis on the security against DoS attacks

and the overheads of the proposed two methods is given
in the previous two subsections. In the following, we will
discuss the security of these two schemes under some other
common attacks and compare the proposed two methods in
terms of security and overheads.

3.3.1 Security under Other Attacks
In the following, we will discuss the security of our two

methods in the presence of sybil attacks [15], wormhole at-
tacks [7], and node replication attacks [17].

Sybil Attacks: In sybil attacks, an adversary tries to
clone sensor nodes with different IDs. However, some key
pre-distribution techniques (e.g., [13]) can effectively remove
the impact of sybil attacks since the keying materials for
pairwise key establishment is bound with the node ID. When
any of these key pre-distribution techniques is employed, we
will be free from sybil attacks.

Wormhole Attacks: Wormhole attacks do impact the
security of our proposed approaches since they can increase
the size of neighbor nodes for a sensor node. However, such
impact is very limited since a significant increase in the num-
ber of neighbor nodes usually indicates a wormhole attack.
In this case, we can simply pick a subset of them for use in
our protocol since as long as a sensor node can deliver its
message to a sufficient number of neighbors, the broadcast
protocol will work correctly.

Node Replication Attacks: By launching node repli-
cation attacks, the adversary can increase the fraction of
compromised nodes in a local area. According to Theorem
1, we can see that this attack does impact our group-based
approach. However, as we discussed, we can always con-
figure parameters such as τ properly or re-grouping sensor
nodes to mitigate the impact of increasing the fraction of
compromised nodes. On the other hand, according to The-
orem 2 and Theorem 3, increasing the fraction of compro-
mised nodes does not generate much impact on the secu-
rity of the key chain-based approach. Moreover, though the
probability of finding a malicious sender is high, a node can
always switch to other nodes if it notices that a particular
sender is suspicious. Therefore, as long as the benign nodes
in the network are well-connected, our protocols will work
correctly.

3.3.2 Comparison
Both pre-authentication filters have advantages and dis-

advantages when compared with each other. In terms of
security, the main difference between them is that the group-
based approach allows a compromised neighbor node to dis-
able the broadcast authentication at a number of other be-
nign neighbor nodes even if the sender is benign. In contrast,
the key chain-based approach does not have this problem.
Thus, the key chain-based method can often perform better
than the group-based approach when there is a large frac-
tion of compromised sensor nodes. In addition, according
to Theorem 2, we know that the key chain-based approach
can have better security when there is a low rate of true
broadcast messages from the base station. However, when
there is only a small fraction of compromised sensor nodes,
the group-based approach can be more secure in the sense
that the fraction of fake signatures leading to unnecessary
signature verifications can be made very small. In contrast,

according to Theorem 2, we know that even without any
compromised node, the key chain-based approach allows the
adversary to fool sensor nodes to perform many unnecessary
signature verifications if there is a high rate of true broadcast
messages from the base station.

In terms of overheads, the group-based method performs
slightly better than the key chain-based approach. First,
the storage overhead of the group-based method (b× (L+1)
keys) is comparable to that of the key chain-based method
(b + 2

√
n keys). Second, the communication cost of the

group-based method only involves the initial distribution of
keying materials and up to L+1 reports from every neighbor
node to the sender. In contrast, the key chain-based method
has to update the keys at neighbor nodes once for a while.
Finally, the group-based approach requires up to m × 2L

hash operations for a sender and one hash operation for a
receiver. In contrast, the key chain-based approach requires
(m−1)q

l
+2 hash operations for a sender, which is comparable

to the group-based method, and B(1−fc)+ [(B−1)τ +1]fc

hash operations for a receiver, which can be many more than
the group-based approach since B has to be configured to
accommodate the lossy channel.

4. RELATED WORK
This section reviews some related work on sensor network

security. A number of techniques have been developed for
key management in sensor networks [4, 2, 13]. To build
trustworthy sensor networks, researchers have studied meth-
ods to protect network services such as data aggregation
[20], routing [9] and location discovery [10]. Many tech-
niques have been proposed to detect wormhole attacks [7]
and node replication attacks [17].

DoS attacks against sensor networks have been thoroughly
evaluated in [24]. The DoS attacks against signature-based
broadcast authentication have also been studied in [16, 23].
A weak authentication mechanism using cryptographic puz-
zles is proposed in [16] to reduce the number of false sig-
nature verifications. However, it requires a powerful sender
and introduces the sender-side delay. The dynamic window
scheme proposed in [23] can control the propagation of fake
messages by making smart choices between verifying a mes-
sage before forwarding it and forwarding a message before
verifying it. However, a fake message will be propagated
in the network until the victim node verifies the signature.
This paper uses pre-authentication filters to efficiently and
effectively filter out fake signatures before verifying them.
This is a useful service that is complementary to the above
studies.

5. CONCLUSION AND FUTURE WORK
ECC-based signature schemes have attracted a lot of at-

tention recently for broadcast authentication in sensor net-
works. However, such approaches are vulnerable to DoS at-
tacks against signature verifications. This paper shows how
the proposed group-based and key chain-based methods ef-
fectively mitigate such DoS attacks.

In the future, we are particularly interested in developing
our systems on real sensor platforms. It is also highly desir-
able to evaluate the performance of our approaches through
field experiments to obtain more useful results such as the
energy savings under attacks. In addition, we will also seek
efficient solutions in scenarios where a sender’s signal range
can reach all or most of the sensor nodes in the network.
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