
Securing Network Access in Wireless Sensor Networks*
Kun Sun§ An Liu†
§
 Intelligent Automation Inc.
15400 Calhoun Dr. #400

Rockville, MD, 20855

{ksun, hgxu}@i-a-i.com

Roger Xu§ Peng Ning†
†
Cyber Defense Laboratory

Department of Computer Science
North Carolina State University

Raleigh, NC 27695

{aliu3, pning}@ncsu.edu

Douglas Maughan‡
‡
Science & Technology Directorate
Department of Homeland Security

douglas.maughan@dhs.gov

ABSTRACT

In wireless sensor networks, it is critical to restrict the network

access only to eligible sensor nodes, while messages from

outsiders will not be forwarded in the networks. In this paper, we

present the design, implementation, and evaluation of a secure

network access system for wireless sensor networks. This paper

makes three contributions: First, it develops a network admission

control subsystem using Elliptic Curve public key cryptosystem to

add new sensor nodes into a sensor network. The admission

control subsystem employs a polynomial-based weak

authentication scheme to mitigate Denial of Service (DoS) attacks

against the public key cryptographic operations. Second, it

implements an interface in TinyOS to provide symmetric key

cryptography using the hardware security support in IEEE

802.15.4 radio components (e.g., CC2420). The hardware security

can satisfy both message authentication and timely delivery

requirements in real-time applications. The third contribution is an

implementation of a stateless group key update scheme to update

a network-wide secret key in a sensor network. We implement all

the proposed techniques on Imote2 sensor platform running

TinyOS and conduct an evaluation through field experiments.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General-Security

and protection

General Terms

Security, Design, Algorithms

Keywords

Sensor Networks, Security, Elliptic Curve Cryptography

1. INTRODUCTION
Wireless sensor networks are comprised of low cost sensor nodes

that have the ability to quickly form a mesh network and

communicate with each other through digital radios. Recent

advances in wireless sensor networks can drastically reduce the

cost and physical limitation in wired network. Therefore, wireless

sensor networks have been widely used in applications such as

process control system, condition monitoring, health and safety

monitoring.

Because it is difficult to define and control boundaries and

interactions between sensor nodes in wireless sensor networks, as

wireless sensor networks are integrated into some critical

infrastructures to promote connectivity and remote access

capabilities, the possibility of cyber security vulnerabilities and

incidents increases significantly. Threats can come from

numerous sources, including hostile governments, terrorist groups,

malicious intruders, complexities, accidents, natural disasters as

well as malicious or accidental actions by insiders.

In wireless sensor networks, it is critical to restrict the network

access only to eligible sensor nodes, while messages from

outsiders should not be forwarded in the networks. Moreover,

outsiders cannot eavesdrop, modify or forge packets from eligible

nodes inside the sensor network. Since sensor nodes are highly

constrained in terms of resources, satisfying the security protocols

in an efficient way (using less energy, computational time and

memory space) without sacrificing the strength of their security

properties is one of the major challenges.

In this paper, we develop a secure network access system in

wireless sensor networks to control the network access to eligible

nodes by providing node authentication, packet authentication,

packet integrity, and packet confidentiality using standardized

cryptosystems. The system works in three stages. In the Network

Admission Control stage, when a new sensor node is added into

an existing sensor network, to communicate with another node

already in the network, the two nodes perform a two-way

authentication and generate a pairwise secret key using a Self-

Certified Elliptic Curve Diffie-Hellman (ECDH) key exchange

protocol [6]. We choose Elliptic Curve Cryptography (ECC)

because it is more suitable for resource-constrained devices due to

its comparable security with much shorter key lengths and less

memory requirement. For example, 160-bit ECC can provide the

same security as 80-bit symmetric and 1024-bit RSA. Because

ECC may suffer from the Denial of Service (DoS) attack,

especially on the resource-constrained sensor nodes, we develop a

polynomial-based weak authentication scheme to mitigate

potential DoS attacks against the Self-Certified ECDH protocol.

For resource constrained sensor nodes, it is expensive to use

public key cryptography to secure all the message

communications. Moreover, many real-time applications require

emergency messages be delivered in a timely manner. The

computation delay of the software solutions (e.g., TinySec [13]) is

too large and unacceptable for many real-time applications. To

solve the above issues, in the Network Access Control stage, we

* This work is support by the Department of Homeland Security

under grant NBCHC080061.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

WiSec’09, March 16–19, 2009, Zurich, Switzerland.

Copyright 2009 ACM 978-1-60558-460-7/09/03...$5.00.

implement an interface in TinyOS to provide symmetric key

cryptography using the hardware security support in IEEE

802.15.4 radio components (e.g., CC2420 [4]). Then, we enforce

secure and efficient network access by employing a network-wide

secret key, which is only known by eligible nodes, to authenticate

all the packets transmitted in the network.

Because all the eligible nodes share a network-wide secret key,

when one node is compromised, we must update the secret key

among all the remaining eligible nodes. This is essentially a group

key update problem. Based on the interdependency of key update

messages, group key update schemes can be classified into either

stateful ones or stateless ones. In a stateful scheme (e.g., [21]), a

legitimate node’s state (fail/success) in the current round of group

key update will affect its ability to decrypt future group keys. In

contrast, the group key update in a stateless scheme is only based

on the current group key update message and the node’s initial

configuration. This property makes stateless group key

distribution very useful in situations where some nodes are not

constantly on-line, or experience burst packet losses. In the

Network Access Maintenance stage, to update the network-wide

secret key, we extend the stateless group key update schemes in [8]

with a packet retransmission scheme, in which a node can recover

the current group key without waiting until receiving the next

round of key update packets.

After implementing all three stages of the secure access system

and the supporting algorithms on Imote2 sensor platform [1] in an

experimental sensor network, we evaluate the system performance

in terms of code size, computation time, and energy consumption.

Through these analyses, we show that our system is a secure and

efficient solution to control the network access in wireless sensor

networks.

The rest of the paper is organized as follows. Section 2 describes

the design of the three stages in the system. Section 3 discusses a

few implementation issues. Section 4 provides the security and

performance analysis of the system in a small sensor network.

Section 5 concludes this paper and points out future research

directions.

2. Overview of Proposed System
In the three stages of the secure access control system, the

Network Admission Control stage is responsible for adding new

eligible nodes into the system; the Network Access Control stage

is to guarantee that all traffic in the system is authenticated; and

the Network Access Maintenance stage is to revoke compromised

nodes, update the group key, and retransmit group keys for out-of-

sync nodes.

2.1 Network Admission Control
We use Self-Certified ECDH protocol [6] to establish a pairwise

key between a new sensor node and a controller node that is

already in the network. The controller node can be a regular

sensor node or a more powerful node. Then we use this pairwise

key to distribute the current group key used in the network from

the controller node to the new node. To avoid possible DoS

attacks against the Self-Certified ECDH protocol, we develop a

polynomial-based weak authentication scheme [7] in this stage.

As shown in Figure 1, before a new node joins the group, a

Certificate Authority (CA) first deploys some keying material

onto the sensor node. The controller of the group will broadcast

their ID periodically. The new node will listen and choose a

controller node with the strongest signal to launch a two-way

authentication and establish a pairwise key using Self-Certified

ECDH protocol. After establishing a secret key, the controller

node uses a push-based method to distribute the current group key

to the new node.

2.1.1 Self-Certified ECDH
Self-Certified ECDH is used to facilitate authentication and

symmetric key establishment between the new node and the

controller node. Compared with ECDH, Self-Certified ECDH

protocol [6] only requires two parties exchange their IDs and

public keys instead of exchanging IDs, public keys and

certificates.

We include two algorithms in Self-Certified ECDH: Fixed Key

algorithm and Ephemeral Key algorithm. In the Fixed Key

algorithm, two parties will always establish the same pairwise key

if they run this algorithm multiple times. In the Ephemeral Key

algorithm, by introducing a new random value, two parties will

generate different pairwise keys if they run the algorithm multiple

times.

There are three components in this protocol: Certificate Authority

(CA), controller node, and regular sensor node. The Certificate

Authority generates and distributes private keys and related

parameters to all nodes in the network, including controller nodes

and regular sensor nodes. Each node in the network will first be

initialized by communicating with the CA and receiving the

keying materials. A controller node broadcasts its ID periodically,

waits for incoming requests from newly deployed sensor nodes,

and then runs the Self-Certified ECDH protocol. A newly

deployed sensor node sends a request message to a controller node

to run the Self-Certified ECDH protocol as the initiator. At the

end of the protocol, the sensor node and the controller node

establish a common pairwise secret key.

The Self-Certified ECDH protocol is vulnerable to Denial of

Service (DoS) attacks due to the expensive scalar point

multiplication operation. An attacker may keep sending fake IDs

and fake public keys to make controller/sensor nodes busy

calculating the secret keys. The underlying reason is that there is

no lightweight authentication on exchanged messages in Self-

Certified ECDH protocol. To defeat DoS attacks against Self-

Certified ECDH protocol, we propose a polynomial-based weak

authentication scheme.

Figure 1: A new node joins the network.

2.1.2 Polynomial-based Weak Authentication
The basic idea of polynomial-based weak authentication [7] is

shown in Figure 2. The Certificate Authority (CA) first generates

a bivariate t-degree polynomial f over a finite field GF(q), where q

is a large prime number. Function f satisfies the following

property: f(x,y) = f(y,x).

As shown in Figure 2, for controller c, CA evaluates x in the

bivariate polynomial f(x,y) by c, and deploys f(c,y) onto c. For

regular node i, CA evaluates x in f(x,y) by i, and deploys f(i,y)

onto i. When node i and controller c want to communicate with

each other, they can establish a pairwise key based on each other’s

ID since f(c,i) = f(i,c). Then they can use key f(i,c) to authenticate

the exchanged messages (i.e., ID, U, EV) in Self-Certified ECDH.

Evaluation of the polynomial is much faster than scalar point

multiplication in Self-Certified ECDH. Both nodes verify the

messages before running Self-Certified ECDH to mitigate the

DoS attack. Our scheme is t-collusion resistant, which means once

t+1 sensor nodes are compromised, the secret polynomial f is

disclosed. Therefore, it can only provide weak authentication, and

cannot replace Self-Certified ECDH to establish secret keys.

2.2 Network Access Control
All nodes in the group will use the same group key to protect

packets transmitted in wireless sensor networks. On the sender

side, the sending node generates a message integrity code (MIC)

for each outgoing packet using the group key. On the receiver side,

the receiving node uses the group key to verify the MIC included

in each incoming packet. If the MIC can be verified, the receiver

forwards the received packet up in the radio stack. Otherwise, the

receiver simply discards the packet.

The software implementation of encryption, decryption, and MIC

generation and verification (e.g., TinySec [13]) will incur a large

delay in packet transmission in the wireless sensor networks. To

minimize such delay, we exploit the hardware security support in

IEEE 802.15.4 radio component (e.g. CC2420 RF chip [4]), which

provides 128-bit AES encryption/decryption. CC2420 features

hardware security with two types of operations: stand-alone

encryption operation and in-line security operation. The stand-

alone encryption operation provides a plain AES encryption, with

128 bit plaintext and 128 bit keys. To encrypt a plaintext, a node

first writes the plaintext to the stand-alone buffer SABUF, and

then issues a SAES command to initiate the encryption operation.

When the encryption is complete, the cipher-text is written back

to the stand-alone buffer, overwriting the plaintext.

The in-line security operation can provide encryption, decryption,

and authentication on frames within the receive buffer (RXFIFO)

and the transmit buffer (TXFIFO) of CC2420 on a frame basis. It

supports three modes of security: counter mode (CTR), CBC-

MAC mode, and CCM mode. CTR mode performs encryption on

the outgoing frames in the TXFIFO buffer, and performs

decryption on the incoming frames in the RXFIFO buffer. CBC-

MAC mode can generate and verify the MIC of the messages. The

length of MIC is variable with even values between 4 bytes and

16 bytes. CCM mode combines CTR mode encryption and CBC-

MIC authentication in one operation. All the three security modes

are based on AES encryption/decryption using 128 bit keys.

2.3 Network Access Maintenance
When some nodes are compromised, a key manager must update

the group key to revoke the compromised nodes from the network.

We design and implement a stateless group key update scheme to

update the group key in the network. A stateless group key update

scheme can guarantee a legitimate node to get the more recent

group key as long as the node receives the corresponding key

update message, even if the node is offline for a while, or misses

several previous rounds of key updates.

In the stateless group key update schemes, each sensor node is

pre-assigned a unique ID and some personal secret keys that never

change during the lifetime of the group. To revoke a node or to

update the group key, the key manager encrypts a new group key

separately, using a set of secret keys only known to the non-

revoked nodes. The manager creates a key update message

consisting of the resulting cipher-texts and some auxiliary

information (e.g., the IDs of the encryption keys), and then

broadcasts this message to the network. After receiving a key

update message, a non-revoked node uses its personal secret key

(or a key derived from its personal secret key) to decrypt a certain

part of the message (indicated by the node ID), and obtains the

new group key.

2.3.1 Stateless Group Key Update
We develop two stateless group key update schemes. In the basic

stateless group key update scheme, controller c uses the pair-wise

secret key Kc,i shared with each non-revoked node i to encrypt the

new group key. This scheme works well for small groups, but

cannot scale to large groups, due to the high communication and

computation overheads on the controller node. It requires

performing n-r AES encryption operations and sending n-r

messages, where n is the total number of group members, r is the

number of the revoked nodes.

To reduce the communication and computation overheads in the

basic scheme, we adopt Subset Difference Method (SDM) [8] in

our system. SDM is a type of Subset-Cover algorithm. Given r

revoked nodes in a total of n nodes, the non-revoked receivers will

be partitioned into at most 2r-1 subsets (or 1.25r on average).

SDM consists of two major algorithms: subset finding algorithm

and key assignment algorithm. The subset finding algorithm

partitions non-revoked nodes into disjointed groups, and the key

assignment algorithm guarantees only the non-revoked nodes can

derive the key and then decrypt the new group key.

The basic idea of SDM is that, whenever we want to revoke a set

of compromised nodes, we can always find subset covers that

only cover eligible nodes in the group. For example, we want to

revoke two compromised nodes (node 4 and node 6) in Figure 3,

where the labels of node 4 and node 6 in the tree are 11 and 13,

respectively. Subset S2,11 covers nodes 1, 2, 3, but not node 4;

subset S3,13 covers nodes 5, 7, 8, but not node 6. If we want to

revoke node 4 and node 6, we encrypt new group key using subset

Figure 2: Polynomial-based weak authentication

key of S2,11 and S3,13 and flood this message through the network.

Only non-revoked nodes have the keying materials to decrypt the

message and obtain the new group key.

In the original SDM scheme, a group key update message may not

fit into one packet when the number of revoked node t becomes

large, so a message may be divided into multiple packets for

delivery. We must guarantee all the packets for one message can

be correctly received by sensor nodes. However, this message

dissemination faces threats from both external attackers and

potentially compromised nodes. For example, the adversary may

attempt to modify or replace one or more group key update

packets being propagated to sensor nodes. As another example,

the adversary may inject bogus group key updated packets and

force normal sensor nodes to verify and/or forward them, thus

exhausting their limited battery power.

We develop a secure message dissemination mechanism to

provide security protection for packet distribution, including the

integrity protection of message and resistance to the potential DoS

attacks. The key issue is to provide immediate authentication of

the multiple packets for a large group key update message. We

arrange packets and their hash images using Merkle Hash Tree

[17] to provide immediate authentication of the packets.

(a) Construction of packets

 Figure 4 illustrates our authentication scheme for the group key

update message. We split each group key update message into N

fixed-size packets, denoted as Pkt1 through PktN. We use Merkle

hash tree [17] to facilitate the authentication of the hash images of

the packets. Specifically, we calculate the hash images of each

packet to have Vi = H(Pkti), (i = 1, 2, ...,N), and construct a

Merkle hash tree using V1, V2, ..., and VN as leaf nodes. Figure 4

shows the construction of the Merkle hash tree when N = 8. We

compute ei = H(Vi) (i = 1, 2, ...,N), and build a binary tree by

computing internal nodes from adjacent children nodes. Each

internal node is the hash image of the two children nodes. For

example, e1−2 = H(e1||e2), and e1−4 = H(e1−2||e3−4).

We then construct N packets using this Merkle hash tree.

Specifically, we construct one packet for each Vi, where i = 1,

2, …, N; each packet consists of packet Pkti and the values in Vi’s

authentication path (i.e., the siblings of the nodes in the path from

Vi to the root) in the Merkle hash tree. For example, a first packet

consists of Pkt1, e2, e3−4, and e5−8 in Figure 4. We include the root

of the Merkle hash tree and a signature over all of them in a

signature packet.

(b) Transmission & Authentication of packets

Our packet construction provides the capability of immediate

packet authentication on receivers. This property is critical for

sensor nodes to prevent DoS attacks aimed at exhausting

receivers’ buffers.

The controller node first broadcasts the signature packet, which

serves as the advertisement of the new group key update message.

Upon receiving a signature packet, each node verifies the

signature to authenticate the root of the Merkle hash tree. This

root allows the node to authenticate each packet upon receipt,

using the values in the authentication path included in the same

packet. For example, in Figure 4, if e1−8 has been authenticated in

the signature packet, upon receiving a packet consisting of Pkt1, e2,

e3−4, and e5−8, a node can immediately verify whether

H(H(H(H(Pkt1)||e2)||e3−4)||e5−8) = e1−8. If the answer is yes, the

received packet is accepted; otherwise, it must be a forged packet

and should be discarded right away.

2.3.2 Group Key in One-way Key Chain
We further customize the stateless group key update schemes for

managing network access control keys. This customization is

based on the observation that network access control keys are

intended for authenticating wireless packets only. As a result,

backward secrecy is not a concern. In other words, once network

access control keys are updated, the secrecy of previous network

access keys is not necessary any more. Based on this observation,

we organize the network access control keys in a one-way key

chain to facilitate the authentication of future keys based on

previous ones.

A one-way key chain is a chain of keys generated through

repeatedly applying a one way hash function H on a random

number (key seed). For instance, kn−1 = H(kn), ..., k0 = H(k1). The

property of one-way means, given a latest released key ki from a

one way key chain, it is computationally infeasible for an

adversary to find any unreleased key kj such that Hj−i(kj) equals ki.

However, it allows a receiver to easily verify that a later key kx

really belongs to the key chain by checking that Hx−i(kx) equals ki.

Using the one-way key chain to organize the network access

control keys, authentication of later keys based on a previous one

can be trivially performed at each node by hashing a newly

Figure 3: SDM tree

Figure 4. The Merkle hash tree constructed for 8 Packets

Figure 5. Organize Keys into one-way key chain

distributed key a few times and verify if it matches a previously

known one. Figure 5 illustrates this approach.

2.3.3 Packet Retransmission Scheme
Some nodes may not receive the group key update message due to

the limited transmission range and topology change. We call these

nodes using old group key as out-of-sync nodes. When a node is

out-of-sync, it cannot access the network until the next round of

group key update, since all its packets won’t have the right MIC.

To bring the out-of-sync nodes back to the network, we exploit

the stateless feature of the SDM scheme we are using. Each node

buffers the most recent key update message it has received, and it

can transmit this buffered message to the out-of-sync nodes that

have not been updated to the newest session key. Then, the out-of-

sync nodes can extract the new session key from the message,

because a stateless group key update scheme allows a node to

obtain the updated group key as long as the node has the

corresponding key update message. Therefore, two key-

unsynchronized nodes that want to communicate can synchronize

their session keys before the next round of group key update.

3. System Implementation
We implement the secure network access system on Imote2 [1]

sensor platform. We develop the system components on sensor

nodes in nesC language on TinyOS. Our implementation assumes

that powerful nodes such as Laptops serve as the CA and the

gateway that pre-distributes the keying materials to the sensor

nodes and collects/processes the data from the sensor nodes in a

wireless sensor network. We use Java to develop the CA and

gateway applications.

3.1 Hardware Modules
Imote2, the hardware platform used in our implementation, is an

advanced wireless sensor node platform, which is built around the

low power PXA271 XScale processor and integrates an 802.15.4

radio (CC2420) with a built-in 2.4GHz antenna.

The radio chip of Imote2, CC2420, features hardware IEEE

802.15.4 security operations. All security operations are based on

AES encryption/decryption using 128 bit keys. Although CC2420

provides hardware security support, TinyOS does not provide

interfaces or modules to use these security operations. In our

system, we implement a new interface called CC2420AES and

related supporting modules to make AES encryption and

decryption available for sensor applications.

3.2 Software Modules
The software modules of our system consist of two major parts:

Java modules on the CA and Gateway nodes and TinyOS modules

on sensor nodes, as shown in Figure 6.

Java modules include three components: CA, polynomial scheme,

and SDM scheme.

 The CA generates public/private key pairs using Bouncy

Castle Crypto APIs [12] and then pre-distributes (1) keying

materials by generating polynomial share, (2) key pair for

Self-Certified ECDH, (3) the commitment of one-way group

key chain, and (4) labels in subset tree according to the node

ID. CA must convert the above keying materials in nesC

code before the pre-distribution.

 The polynomial generation scheme is responsible for

generating polynomials.

 SDM scheme builds a full binary tree and a Steiner Tree, and

provides the subset cover finding algorithm using Java Data

Structure Library (JDSL) [20].

TinyOS modules include the implementations for the polynomial-

based weak authentication, Self-Certified ECDH protocol, AES

encryption/decryption interface, and SDM scheme.

 Polynomial-based weak authentication uses the big number

operation in TinyECC 1.0 [5].

 Self-Certified ECDH uses the big number operation, scalar

point multiplication operation, and point addition operation

in TinyECC 1.0.

 Because TinyOS does not provide an interface to use the

hardware security component in CC2420, we develop an

AES encryption/decryption interface that supports CTR,

CCM, and CBC-MAC modes. Although hardware security in

CC2420 only implements AES encryption (no AES

decryption in hardware), the above three modes do not need

AES decryption.

 SDM scheme provides functions that encrypt new group keys

and generate group key update messages on the controller

node. It also provides functions that derive subset keys from

subsets and pre-distributed keying materials, and decrypt

new group key using the derived subset key.

3.2.1.1 TinyECC
Because both Self-Certified ECDH and polynomial-based weak

authentication protocols are based on TinyECC [5], we would like

to give a review on TinyECC. Elliptic curve cryptography (ECC)

is an approach to public-key cryptography based on the algebraic

structure of elliptic curves over finite fields. The hardness of

solving elliptic curve discrete logarithm problem (ECDLP) allows

several cryptographic schemes based on elliptic curves. TinyECC

[5] is to provide a ready-to-use, publicly available software

package for ECC-based PKC operations that can be flexibly

configured and integrated into sensor network applications.

TinyECC is implemented on TinyOS, which is a popular, open-

source OS for networked sensors. All the TinyECC components

have nesC implementations, though some modules also include

inline assembly code, which can be turned on for faster execution

on some sensor platforms. This allows TinyECC to be compiled

and used on any sensor platform that can run TinyOS. TinyECC

Figure 6: System modules

has been tested successfully on MICAz, TelosB, Tmote Sky, and

Imote2. TinyECC adopts almost all existing optimizations for

ECC operations. These optimizations can be turned on or off to

balance the efficiency and the resource requirements.

3.2.1.2 Self-Certified ECDH
We implement Self-Certified ECDH protocol using the Big

Number, scalar multiplication, and point addition operations in

TinyECC. Our implementation consists of three components,

Certificate Authority, controller node, and regular sensor node.

The CA generates and distributes private keys and related

parameters to all nodes in the network, including controller nodes

and regular sensor nodes. In our experiment, the CA is

implemented on a laptop. We assume the laptop is secure and

won’t be compromised. Whenever we deploy a sensor node i, we

run a java program to generate private key for node i and save the

key in nesC code. Thus, when we compile and install the nesC

code for node i, it can get its private key and related parameters

for Self-Certified ECDH protocol. We use the bouncy castle

provider for java [12] to provide the elliptic curve operations.

A regular sensor node sends a request message to a controller

node to run the Self-Certified ECDH protocol as the initiator. The

controller node waits for incoming requests from newly deployed

sensor nodes, and then runs the Self-Certified ECDH protocol.

We implement both fixed key agreement algorithm and ephemeral

key agreement algorithm in Self-Certified ECDH .

3.2.1.3 Polynomial based Weak Authentication
For polynomial-based weak authentication, we implement a java

program to facilitate the operations of the CA on the laptop. First,

it generates a polynomial and saves the coefficients of the

polynomial in a symmetric matrix. Then, it generates polynomial

share according to the node ID and saves polynomial share in

nesC code.

Figure 7: Network Admission Control procedure

The Network Admission Control stage is shown in Figure 7.

Controller nodes periodically broadcast their IDs. A sensor node i

picks a controller node with the strongest signal strength (RSSI)

and sends a request message to the controller node. This request

message contains its Self-Certified ECDH public key Ui, nonce,

and it’s ID. Node i also appends a HMAC using the pairwise key

kic generated by the polynomial scheme. Once the controller node

receives this request message, it evaluates polynomial share using

i, derives the key kci, and verifies the HMAC. If the HMAC is not

correct, it simply drops the request message. Otherwise, the

controller node performs Self-Certified ECDH to establish a

pairwise key, skci, with node i. Next, it sends back a reply

message containing its Self-Certified ECDH public key Uc with

one HMAC using kci and a new HMAC using skci. After some

random delay, controller node c sends out the new group key

encrypted by using key skci. At this time, node i should have

finished its Self-Certified ECDH operations and obtained skic.

Then node i decrypts new group key and configures its CC2420

radio to use the new group key.

3.2.1.4 Stateless Group Key Update
The stateless group key update scheme consists of several

components to implement SDM. Certificate Authority (CA)

generates and saves the full binary tree for SDM in Java. Because

JDK doesn’t provide binary tree data structure, we use the data

structure library in java (http://www.jdsl.org/) [22] to implement

the binary tree. The deployed sensor nodes don’t need to save the

whole binary tree. For each sensor node i, CA generates nesC

code that saves the labels in the binary tree for node i to derive

subset key.

The controller node has a copy of the latest group key update

message, thus it knows which node has been revoked and which

node is normal. We implement an algorithm to check which node

is out-of-sync. The basic idea works as follows: whenever the

controller node finds a packet MIC verification failure, if the

source node ID is not in the revoked list, it records the node ID

and increases a specific counter by one. Whenever the controller

node finds a packet MIC verification success, if the source node

ID is not in the revoked list, the controller node clears the counter

for that node ID. Once the counter for a node ID is larger than a

threshold (e.g., 20), the controller node sends the buffered group

key update message to this node. In this way, we limit the

message overhead for helping the out-of-sync nodes obtain the

new group key before the next round of group key update.

3.2.1.5 Pairwise Key Based Group Key Update
After a controller node and a sensor node establish a pairwise key

using the Self-Certified ECDH protocol, the controller node uses

simple push-based method to distribute current group key to the

sensor node.

For each sensor node kept in the controller node’s memory, the

controller node retrieves the pairwise key shared with the regular

one, encrypts and authenticates the current group key using the

pairwise key, and sends the encrypted message to the regular node.

The controller node starts a timer to wait for the ACK from the

regular node. It will retransmit up to certain times before it

receives an ACK (authenticated with the pairwise key) from the

sensor node. Upon receiving a group key update message, a

sensor node verifies the MIC and decrypts the message to retrieve

the current group key. The sensor node performs the decryption

operation and accepts the new group key only when the MIC can

be verified correctly. Then, the sensor node sends an ACK

message back to the controller node. The ACK message is

authenticated with the pairwise key,

After a sensor node obtains the current group key from the

controller node, it will use the group key to protect its messages,

verify and forward the messages from other nodes. Among many

sensor network applications, it is more important to provide

message authentication than message confidentiality, because we

must guarantee the data collected from the sensor networks are

http://www.jdsl.org/

sent from the eligible nodes and have not been modified by

attackers.

4. Performance Evaluation
We use a small wireless sensor network with 7 Imote2 to evaluate

the overhead and efficiency of our system. We set the following

parameters in our system. For Elliptic Curve Cryptography, we

use the secp160r1 parameter set [11]. We choose 128-AES for

symmetric key cryptography. We run our system on Imote2 at

four different frequencies: 13 MHz, 104 MHz, 208 MHz, and 416

MHz.

4.1 Code Size
The code size of our system on Imote2 is shown in Table 1.

Compared with the memory size of Imote2 (256 KB RAM, 32

MB ROM), our system is small and affordable.

Table 1. Code size on Imote2

Graphics ROM (bytes) RAM(bytes)

Controller

module
179,836 18,788

Regular sensor

module
180,188 16,388

4.2 Computation Time
We measure the execution time of polynomial-based scheme and

Self-Certified ECDH protocol, and show the results in Figure 8

and Figure 9. We find that polynomial-based pairwise key

establishment is very fast. It only needs around 2 ms to establish a

pair-wise key using the polynomial-based key establishment

scheme. It is 425 times faster than the fixed key establishment

algorithm and 700 times faster than the ephemeral key

establishment algorithm in Self-Certified ECDH. It explains why

polynomial-based weak authentication can mitigate DoS attacks

against Self-Certified ECDH.

The computation delay in our system is shown in Figure 10.

Request–ack is the waiting time for a regular sensor node from

sending out a request message to receiving a reply message from a

controller node. ECDH key establish is the time to compute Self-

Certified ECDH key. Group key msg process is the time for the

regular node to decrypt new group key using the pairwise key

generated in Self-Certified ECDH. The above three computation

processes only happen when a sensor node joins a sensor network

for the first time. Revoke msg process is the time for a sensor node

to derive the subset key and decrypt the new group key using

SDM. When we run the sensor nodes in higher frequency, we can

reduce the computation delay accordingly. However, when we test

the sensor nodes using 416 MHz frequency, we find that the nodes

are not very stable due to the high frequency setting.

The partial packet transmission delay caused by CC2420

hardware security operations is shown in Figure 11. The delay

introduced by the security operations is small. The packet payload

size is 25 bytes, which is reasonable and efficient. We notice that

the most expensive operation CCM mode is 1.38 times slows than

the packet transmission without any security operation.

Figure 8. Time delays in polynomial-based scheme

Figure 9. Time delay in Self-Certified ECDH

Figure 10. Computation delay

Figure 11. Packet transmission time in CC2420

4.3 Packet Communication Delay
The communication delays for three different security modes are

listed in Table 2. In our experiment, we add 8 bytes as MIC in the

CBC-MAC, which will introduce 0.256 ms of delay for

transmitting the extra bytes through the radio.

Table 2. Packet communication delay

4.4 Energy Consumption
Because the computation and communication overhead of our

secure system is very small, the extra energy consumption

introduced by our secure system is small too. For the PXA271

microprocessor on Imote2 sensor nodes, it costs 390 uA in deep

sleep mode, and 44 mA (13MHz) and 66 mA (104MHz) in active

mode. For the CC2420 radio which is designed for very low

current consumption, it only costs18.8 mA in receiving mode and

17.4 mA in transmitting mode.

5. Conclusion
In this paper, we have presented a prototype of secure network

access control system in wireless sensor networks. Our design and

implementation have successfully proven the feasibility of the

proposed technical approaches. As our future work, we will

extend the secure access system to support large wireless mesh

networks.

6. REFERENCES
[1] http://www.xbow.com/Products/Product_pdf_files/Wireless_

pdf/Imote2_Datasheet.pdf

[2] http://www.meshnetics.com/Building_Subsidence_Monitorin

g_Case_Study.pdf

[3] www.xbow.com

[4] SmartRF CC2420 Datasheet.

http://focus.ti.com/lit/ds/symlink/cc2420.pdf

[5] A. Liu, P. Kampanakis, and P. Ning, ``TinyECC: Elliptic

curve cryptography for sensor networks (version 0.3),''

http://discovery.csc.ncsu.edu/software/TinyECC/.

[6] Arazi, B. (1999). Certification of dl/ec keys. In Proceedings

of the IEEE P1363 Study Group for Future Public-Key

Cryptography Standards.

[7] Donggang Liu, Peng Ning, "Establishing Pairwise Keys in

Distributed Sensor Networks," in Proc. of ACM Conference

on Computer and Communications Security (CCS), 2003

[8] D. Naor, M. Naor and J. Lotspiech “Revocation and Tracing

Schemes for Stateless Receivers”, CRYPTO ’2001

[9] D. Hankerson, A. Menezens, and S. Vanstone. Guide to

Elliptic Curve Cryptography. Springer, 2004.

[10] Certicom Research. Standards for efficient cryptography –

SEC1: Elliptic curve cryptography.

http://www.secg.org/download/aid-385/sec1_final.pdf

[11] Certicom Research. Standards for efficient cryptography –

SEC2: Recommended Elliptic Curve Domain Parameters.

http://www.secg.org/download/aid-386/sec2_final.pdf

[12] Bouncy Castle provider, http://www.bouncycastle.org/

[13] Chris Karlof, Naveen Sastry, and David Wagner., “TinySec:

A Link Layer Security Architecture for Wireless Sensor

Networks”, ACM SenSys 2004,

[14] Y. Hu, A. Perrig, and D. B. Johnson. Wormhole detection in

wireless ad hoc networks. Technical Report TR01-384,

Department of Computer Science, Rice University, Dec

2001.

[15] A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient

authentication and signing of multicast streams over lossy

channels. In Proceedings of the 2000 IEEE Symposium on

Security and Privacy, May 2000.

[16] Sangwon Hyun, Peng Ning, An Liu, Wenliang Du, "Seluge:

Secure and DoS-Resistant Code Dissemination in Wireless

Sensor Networks," in Proceedings of the 7th International

Conference on Information Processing in Sensor Networks

(IPSN 2008), IP Track, pages 445--456, April 2008.

[17] R. Merkle. Protocols for public key cryptosystems. In

Proceedings of the IEEE Symposium on Research in Security

and Privacy, Apr 1980.

[18] Additional ECC Groups For IKE,

http://www1.tools.ietf.org/html/draft-ietf-ipsec-ike-ecc-

groups-06

[19] Donggang Liu, Peng Ning. Improving Key Pre-Distribution

with Deployment Knowledge in Static Sensor Networks. In

ACM Transactions on Sensor Networks (TOSN), Vol. 1, No.

2, pages 204-239, November 2005.

[20] IEEE std. 802.15.4 - 2003: Wireless Medium Access Control

(MAC) and Physical Layer (PHY) specifications for Low

Rate Wireless Personal Area Networks (LR-WPANs)

http://standards.ieee.org/getieee802/download/802.15.4-

2003.pdf

[21] 25. C. Wong, M. Gouda, and S. Lam. Secure Group

communications Using Key Graphs. In Proceedings of the

ACM SIGCOMM ’98, Vancouver, B.C, 1998.

[22] Java Data Structure Library (JDSL) http://www.jdsl.org/

http://standards.ieee.org/getieee802/download/802.15.4-2003.pdf
http://standards.ieee.org/getieee802/download/802.15.4-2003.pdf

