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ABSTRACT 

In wireless sensor networks, it is critical to restrict the network 

access only to eligible sensor nodes, while messages from 

outsiders will not be forwarded in the networks. In this paper, we 

present the design, implementation, and evaluation of a secure 

network access system for wireless sensor networks. This paper 

makes three contributions: First, it develops a network admission 

control subsystem using Elliptic Curve public key cryptosystem to 

add new sensor nodes into a sensor network. The admission 

control subsystem employs a polynomial-based weak 

authentication scheme to mitigate Denial of Service (DoS) attacks 

against the public key cryptographic operations. Second, it 

implements an interface in TinyOS to provide symmetric key 

cryptography using the hardware security support in IEEE 

802.15.4 radio components (e.g., CC2420). The hardware security 

can satisfy both message authentication and timely delivery 

requirements in real-time applications. The third contribution is an 

implementation of a stateless group key update scheme to update 

a network-wide secret key in a sensor network. We implement all 

the proposed techniques on Imote2 sensor platform running 

TinyOS and conduct an evaluation through field experiments.  

Categories and Subject Descriptors 

C.2.0 [Computer-Communication Networks]: General-Security 

and protection 

General Terms 

Security, Design, Algorithms 
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1. INTRODUCTION 
Wireless sensor networks are comprised of low cost sensor nodes 

that have the ability to quickly form a mesh network and 

communicate with each other through digital radios. Recent 

advances in wireless sensor networks can drastically reduce the 

cost and physical limitation in wired network. Therefore, wireless 

sensor networks have been widely used in applications such as 

process control system, condition monitoring, health and safety 

monitoring. 

Because it is difficult to define and control boundaries and 

interactions between sensor nodes in wireless sensor networks, as 

wireless sensor networks are integrated into some critical 

infrastructures to promote connectivity and remote access 

capabilities, the possibility of cyber security vulnerabilities and 

incidents increases significantly. Threats can come from 

numerous sources, including hostile governments, terrorist groups, 

malicious intruders, complexities, accidents, natural disasters as 

well as malicious or accidental actions by insiders.  

In wireless sensor networks, it is critical to restrict the network 

access only to eligible sensor nodes, while messages from 

outsiders should not be forwarded in the networks. Moreover, 

outsiders cannot eavesdrop, modify or forge packets from eligible 

nodes inside the sensor network. Since sensor nodes are highly 

constrained in terms of resources, satisfying the security protocols 

in an efficient way (using less energy, computational time and 

memory space) without sacrificing the strength of their security 

properties is one of the major challenges.  

In this paper, we develop a secure network access system in 

wireless sensor networks to control the network access to eligible 

nodes by providing node authentication, packet authentication, 

packet integrity, and packet confidentiality using standardized 

cryptosystems. The system works in three stages. In the Network 

Admission Control stage, when a new sensor node is added into 

an existing sensor network, to communicate with another node 

already in the network, the two nodes perform a two-way 

authentication and generate a pairwise secret key using a Self-

Certified Elliptic Curve Diffie-Hellman (ECDH) key exchange 

protocol [6]. We choose Elliptic Curve Cryptography (ECC) 

because it is more suitable for resource-constrained devices due to 

its comparable security with much shorter key lengths and less 

memory requirement. For example, 160-bit ECC can provide the 

same security as 80-bit symmetric and 1024-bit RSA. Because 

ECC may suffer from the Denial of Service (DoS) attack, 

especially on the resource-constrained sensor nodes, we develop a 

polynomial-based weak authentication scheme to mitigate 

potential DoS attacks against the Self-Certified ECDH protocol.  

For resource constrained sensor nodes, it is expensive to use 

public key cryptography to secure all the message 

communications. Moreover, many real-time applications require 

emergency messages be delivered in a timely manner. The 

computation delay of the software solutions (e.g., TinySec [13]) is 

too large and unacceptable for many real-time applications. To 

solve the above issues, in the Network Access Control stage, we 
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implement an interface in TinyOS to provide symmetric key 

cryptography using the hardware security support in IEEE 

802.15.4 radio components (e.g., CC2420 [4]). Then, we enforce 

secure and efficient network access by employing a network-wide 

secret key, which is only known by eligible nodes, to authenticate 

all the packets transmitted in the network.  

Because all the eligible nodes share a network-wide secret key, 

when one node is compromised, we must update the secret key 

among all the remaining eligible nodes. This is essentially a group 

key update problem. Based on the interdependency of key update 

messages, group key update schemes can be classified into either 

stateful ones or stateless ones. In a stateful scheme (e.g., [21]), a 

legitimate node’s state (fail/success) in the current round of group 

key update will affect its ability to decrypt future group keys. In 

contrast, the group key update in a stateless scheme is only based 

on the current group key update message and the node’s initial 

configuration. This property makes stateless group key 

distribution very useful in situations where some nodes are not 

constantly on-line, or experience burst packet losses. In the 

Network Access Maintenance stage, to update the network-wide 

secret key, we extend the stateless group key update schemes in [8] 

with a packet retransmission scheme, in which a node can recover 

the current group key without waiting until receiving the next 

round of key update packets.  

After implementing all three stages of the secure access system 

and the supporting algorithms on Imote2 sensor platform [1] in an 

experimental sensor network, we evaluate the system performance 

in terms of code size, computation time, and energy consumption. 

Through these analyses, we show that our system is a secure and 

efficient solution to control the network access in wireless sensor 

networks. 

The rest of the paper is organized as follows. Section 2 describes 

the design of the three stages in the system. Section 3 discusses a 

few implementation issues. Section 4 provides the security and 

performance analysis of the system in a small sensor network. 

Section 5 concludes this paper and points out future research 

directions. 

2. Overview of Proposed System 
In the three stages of the secure access control system, the 

Network Admission Control stage is responsible for adding new 

eligible nodes into the system; the Network Access Control stage 

is to guarantee that all traffic in the system is authenticated; and 

the Network Access Maintenance stage is to revoke compromised 

nodes, update the group key, and retransmit group keys for out-of-

sync nodes. 

2.1 Network Admission Control 
We use Self-Certified ECDH protocol [6] to establish a pairwise 

key between a new sensor node and a controller node that is 

already in the network. The controller node can be a regular 

sensor node or a more powerful node. Then we use this pairwise 

key to distribute the current group key used in the network from 

the controller node to the new node. To avoid possible DoS 

attacks against the Self-Certified ECDH protocol, we develop a 

polynomial-based weak authentication scheme [7] in this stage.  

As shown in Figure 1, before a new node joins the group, a 

Certificate Authority (CA) first deploys some keying material 

onto the sensor node. The controller of the group will broadcast 

their ID periodically. The new node will listen and choose a 

controller node with the strongest signal to launch a two-way 

authentication and establish a pairwise key using Self-Certified 

ECDH protocol. After establishing a secret key, the controller 

node uses a push-based method to distribute the current group key 

to the new node. 

 

2.1.1 Self-Certified ECDH 
Self-Certified ECDH is used to facilitate authentication and 

symmetric key establishment between the new node and the 

controller node. Compared with ECDH, Self-Certified ECDH 

protocol [6] only requires two parties exchange their IDs and 

public keys instead of exchanging IDs, public keys and 

certificates.  

We include two algorithms in Self-Certified ECDH: Fixed Key 

algorithm and Ephemeral Key algorithm. In the Fixed Key 

algorithm, two parties will always establish the same pairwise key 

if they run this algorithm multiple times. In the Ephemeral Key 

algorithm, by introducing a new random value, two parties will 

generate different pairwise keys if they run the algorithm multiple 

times. 

There are three components in this protocol: Certificate Authority 

(CA), controller node, and regular sensor node. The Certificate 

Authority generates and distributes private keys and related 

parameters to all nodes in the network, including controller nodes 

and regular sensor nodes. Each node in the network will first be 

initialized by communicating with the CA and receiving the 

keying materials. A controller node broadcasts its ID periodically, 

waits for incoming requests from newly deployed sensor nodes, 

and then runs the Self-Certified ECDH protocol. A newly 

deployed sensor node sends a request message to a controller node 

to run the Self-Certified ECDH protocol as the initiator. At the 

end of the protocol, the sensor node and the controller node 

establish a common pairwise secret key. 

The Self-Certified ECDH protocol is vulnerable to Denial of 

Service (DoS) attacks due to the expensive scalar point 

multiplication operation. An attacker may keep sending fake IDs 

and fake public keys to make controller/sensor nodes busy 

calculating the secret keys. The underlying reason is that there is 

no lightweight authentication on exchanged messages in Self-

Certified ECDH protocol. To defeat DoS attacks against Self-

Certified ECDH protocol, we propose a polynomial-based weak 

authentication scheme. 

 
Figure 1: A new node joins the network. 



2.1.2 Polynomial-based Weak Authentication 
The basic idea of polynomial-based weak authentication [7] is 

shown in Figure 2. The Certificate Authority (CA) first generates 

a bivariate t-degree polynomial f over a finite field GF(q), where q 

is a large prime number. Function f satisfies the following 

property: f(x,y) = f(y,x). 

 

As shown in Figure 2, for controller c, CA evaluates x in the 

bivariate polynomial f(x,y) by c, and deploys f(c,y) onto c. For 

regular node i, CA evaluates x in f(x,y) by i, and deploys f(i,y) 

onto i. When node i and controller c want to communicate with 

each other, they can establish a pairwise key based on each other’s 

ID since f(c,i) = f(i,c). Then they can use key f(i,c) to authenticate 

the exchanged messages (i.e., ID, U, EV) in Self-Certified ECDH. 

Evaluation of the polynomial is much faster than scalar point 

multiplication in Self-Certified ECDH. Both nodes verify the 

messages before running Self-Certified ECDH to mitigate the 

DoS attack. Our scheme is t-collusion resistant, which means once 

t+1 sensor nodes are compromised, the secret polynomial f is 

disclosed. Therefore, it can only provide weak authentication, and 

cannot replace Self-Certified ECDH to establish secret keys. 

2.2 Network Access Control 
All nodes in the group will use the same group key to protect 

packets transmitted in wireless sensor networks. On the sender 

side, the sending node generates a message integrity code (MIC) 

for each outgoing packet using the group key. On the receiver side, 

the receiving node uses the group key to verify the MIC included 

in each incoming packet. If the MIC can be verified, the receiver 

forwards the received packet up in the radio stack. Otherwise, the 

receiver simply discards the packet.  

The software implementation of encryption, decryption, and MIC 

generation and verification (e.g., TinySec [13]) will incur a large 

delay in packet transmission in the wireless sensor networks. To 

minimize such delay, we exploit the hardware security support in 

IEEE 802.15.4 radio component (e.g. CC2420 RF chip [4]), which 

provides 128-bit AES encryption/decryption. CC2420 features 

hardware security with two types of operations: stand-alone 

encryption operation and in-line security operation. The stand-

alone encryption operation provides a plain AES encryption, with 

128 bit plaintext and 128 bit keys. To encrypt a plaintext, a node 

first writes the plaintext to the stand-alone buffer SABUF, and 

then issues a SAES command to initiate the encryption operation. 

When the encryption is complete, the cipher-text is written back 

to the stand-alone buffer, overwriting the plaintext. 

The in-line security operation can provide encryption, decryption, 

and authentication on frames within the receive buffer (RXFIFO) 

and the transmit buffer (TXFIFO) of CC2420 on a frame basis. It 

supports three modes of security: counter mode (CTR), CBC-

MAC mode, and CCM mode. CTR mode performs encryption on 

the outgoing frames in the TXFIFO buffer, and performs 

decryption on the incoming frames in the RXFIFO buffer. CBC-

MAC mode can generate and verify the MIC of the messages. The 

length of MIC is variable with even values between 4 bytes and 

16 bytes. CCM mode combines CTR mode encryption and CBC-

MIC authentication in one operation. All the three security modes 

are based on AES encryption/decryption using 128 bit keys.  

2.3 Network Access Maintenance  
When some nodes are compromised, a key manager must update 

the group key to revoke the compromised nodes from the network. 

We design and implement a stateless group key update scheme to 

update the group key in the network. A stateless group key update 

scheme can guarantee a legitimate node to get the more recent 

group key as long as the node receives the corresponding key 

update message, even if the node is offline for a while, or misses 

several previous rounds of key updates. 

In the stateless group key update schemes, each sensor node is 

pre-assigned a unique ID and some personal secret keys that never 

change during the lifetime of the group. To revoke a node or to 

update the group key, the key manager encrypts a new group key 

separately, using a set of secret keys only known to the non-

revoked nodes. The manager creates a key update message 

consisting of the resulting cipher-texts and some auxiliary 

information (e.g., the IDs of the encryption keys), and then 

broadcasts this message to the network. After receiving a key 

update message, a non-revoked node uses its personal secret key 

(or a key derived from its personal secret key) to decrypt a certain 

part of the message (indicated by the node ID), and obtains the 

new group key.  

2.3.1 Stateless Group Key Update 
We develop two stateless group key update schemes. In the basic 

stateless group key update scheme, controller c uses the pair-wise 

secret key Kc,i shared with each non-revoked node i to encrypt the 

new group key. This scheme works well for small groups, but 

cannot scale to large groups, due to the high communication and 

computation overheads on the controller node. It requires 

performing n-r AES encryption operations and sending n-r 

messages, where n is the total number of group members, r is the 

number of the revoked nodes.  

To reduce the communication and computation overheads in the 

basic scheme, we adopt Subset Difference Method (SDM) [8] in 

our system. SDM is a type of Subset-Cover algorithm. Given r 

revoked nodes in a total of n nodes, the non-revoked receivers will 

be partitioned into at most 2r-1 subsets (or 1.25r on average). 

SDM consists of two major algorithms: subset finding algorithm 

and key assignment algorithm. The subset finding algorithm 

partitions non-revoked nodes into disjointed groups, and the key 

assignment algorithm guarantees only the non-revoked nodes can 

derive the key and then decrypt the new group key.  

The basic idea of SDM is that, whenever we want to revoke a set 

of compromised nodes, we can always find subset covers that 

only cover eligible nodes in the group. For example, we want to 

revoke two compromised nodes (node 4 and node 6) in Figure 3, 

where the labels of node 4 and node 6 in the tree are 11 and 13, 

respectively. Subset S2,11 covers nodes 1, 2, 3, but not node 4; 

subset S3,13 covers nodes 5, 7, 8, but not node 6. If we want to 

revoke node 4 and node 6, we encrypt new group key using subset 

 

Figure 2: Polynomial-based weak authentication 



key of S2,11 and S3,13 and flood this message through the network. 

Only non-revoked nodes have the keying materials to decrypt the 

message and obtain the new group key. 

In the original SDM scheme, a group key update message may not 

fit into one packet when the number of revoked node t becomes 

large, so a message may be divided into multiple packets for 

delivery. We must guarantee all the packets for one message can 

be correctly received by sensor nodes. However, this message 

dissemination faces threats from both external attackers and 

potentially compromised nodes. For example, the adversary may 

attempt to modify or replace one or more group key update 

packets being propagated to sensor nodes. As another example, 

the adversary may inject bogus group key updated packets and 

force normal sensor nodes to verify and/or forward them, thus 

exhausting their limited battery power.  

We develop a secure message dissemination mechanism to 

provide security protection for packet distribution, including the 

integrity protection of message and resistance to the potential DoS 

attacks. The key issue is to provide immediate authentication of 

the multiple packets for a large group key update message. We 

arrange packets and their hash images using Merkle Hash Tree 

[17] to provide immediate authentication of the packets.  

(a) Construction of packets 

 Figure 4 illustrates our authentication scheme for the group key 

update message. We split each group key update message into N 

fixed-size packets, denoted as Pkt1 through PktN. We use Merkle 

hash tree [17] to facilitate the authentication of the hash images of 

the packets. Specifically, we calculate the hash images of each 

packet to have Vi = H(Pkti), (i = 1, 2, ...,N), and construct a 

Merkle hash tree using V1, V2, ..., and VN as leaf nodes. Figure 4 

shows the construction of the Merkle hash tree when N = 8. We 

compute ei = H(Vi) (i = 1, 2, ...,N), and build a binary tree by 

computing internal nodes from adjacent children nodes. Each 

internal node is the hash image of the two children nodes. For 

example, e1−2 = H(e1||e2), and e1−4 = H(e1−2||e3−4). 

We then construct N packets using this Merkle hash tree. 

Specifically, we construct one packet for each Vi, where i = 1, 

2, …, N; each packet consists of packet Pkti and the values in Vi’s 

authentication path (i.e., the siblings of the nodes in the path from 

Vi to the root) in the Merkle hash tree. For example, a first packet 

consists of Pkt1, e2, e3−4, and e5−8 in Figure 4. We include the root 

of the Merkle hash tree and a signature over all of them in a 

signature packet.  

(b) Transmission & Authentication of packets 

Our packet construction provides the capability of immediate 

packet authentication on receivers. This property is critical for 

sensor nodes to prevent DoS attacks aimed at exhausting 

receivers’ buffers.  

 

The controller node first broadcasts the signature packet, which 

serves as the advertisement of the new group key update message. 

Upon receiving a signature packet, each node verifies the 

signature to authenticate the root of the Merkle hash tree. This 

root allows the node to authenticate each packet upon receipt, 

using the values in the authentication path included in the same 

packet. For example, in Figure 4, if e1−8 has been authenticated in 

the signature packet, upon receiving a packet consisting of Pkt1, e2, 

e3−4, and e5−8, a node can immediately verify whether 

H(H(H(H(Pkt1)||e2)||e3−4)||e5−8) = e1−8. If the answer is yes, the 

received packet is accepted; otherwise, it must be a forged packet 

and should be discarded right away. 

2.3.2 Group Key in One-way Key Chain  
We further customize the stateless group key update schemes for 

managing network access control keys. This customization is 

based on the observation that network access control keys are 

intended for authenticating wireless packets only. As a result, 

backward secrecy is not a concern. In other words, once network 

access control keys are updated, the secrecy of previous network 

access keys is not necessary any more. Based on this observation, 

we organize the network access control keys in a one-way key 

chain to facilitate the authentication of future keys based on 

previous ones. 

 

A one-way key chain is a chain of keys generated through 

repeatedly applying a one way hash function H on a random 

number (key seed). For instance, kn−1 = H(kn), ..., k0 = H(k1). The 

property of one-way means, given a latest released key ki from a 

one way key chain, it is computationally infeasible for an 

adversary to find any unreleased key kj such that Hj−i(kj) equals ki. 

However, it allows a receiver to easily verify that a later key kx 

really belongs to the key chain by checking that Hx−i(kx) equals ki. 

Using the one-way key chain to organize the network access 

control keys, authentication of later keys based on a previous one 

can be trivially performed at each node by hashing a newly 

 

Figure 3: SDM tree 
 

Figure 4. The Merkle hash tree constructed for 8 Packets 

 

Figure 5. Organize Keys into one-way key chain 



distributed key a few times and verify if it matches a previously 

known one. Figure 5 illustrates this approach. 

2.3.3 Packet Retransmission Scheme 
Some nodes may not receive the group key update message due to 

the limited transmission range and topology change. We call these 

nodes using old group key as out-of-sync nodes. When a node is 

out-of-sync, it cannot access the network until the next round of 

group key update, since all its packets won’t have the right MIC. 

To bring the out-of-sync nodes back to the network, we exploit 

the stateless feature of the SDM scheme we are using. Each node 

buffers the most recent key update message it has received, and it  

can transmit this buffered message to the out-of-sync nodes that 

have not been updated to the newest session key. Then, the out-of-

sync nodes can extract the new session key from the message, 

because a stateless group key update scheme allows a node to 

obtain the updated group key as long as the node has the 

corresponding key update message. Therefore, two key-

unsynchronized nodes that want to communicate can synchronize 

their session keys before the next round of group key update.  

3. System Implementation 
We implement the secure network access system on Imote2 [1] 

sensor platform. We develop the system components on sensor 

nodes in nesC language on TinyOS. Our implementation assumes 

that powerful nodes such as Laptops serve as the CA and the 

gateway that pre-distributes the keying materials to the sensor 

nodes and collects/processes the data from the sensor nodes in a 

wireless sensor network. We use Java to develop the CA and 

gateway applications.  

3.1 Hardware Modules 
Imote2, the hardware platform used in our implementation, is an 

advanced wireless sensor node platform, which is built around the 

low power PXA271 XScale processor and integrates an 802.15.4 

radio (CC2420) with a built-in 2.4GHz antenna.  

The radio chip of Imote2, CC2420, features hardware IEEE 

802.15.4 security operations. All security operations are based on 

AES encryption/decryption using 128 bit keys. Although CC2420 

provides hardware security support, TinyOS does not provide 

interfaces or modules to use these security operations. In our 

system, we implement a new interface called CC2420AES and 

related supporting modules to make AES encryption and 

decryption available for sensor applications. 

3.2 Software Modules 
The software modules of our system consist of two major parts: 

Java modules on the CA and Gateway nodes and TinyOS modules 

on sensor nodes, as shown in Figure 6. 

Java modules include three components: CA, polynomial scheme, 

and SDM scheme.  

 The CA generates public/private key pairs using Bouncy 

Castle Crypto APIs [12] and then pre-distributes (1) keying 

materials by generating polynomial share, (2) key pair for 

Self-Certified ECDH, (3) the commitment of one-way group 

key chain, and (4) labels in subset tree according to the node 

ID. CA must convert the above keying materials in nesC 

code before the pre-distribution.  

 The polynomial generation scheme is responsible for 

generating polynomials. 

 SDM scheme builds a full binary tree and a Steiner Tree, and 

provides the subset cover finding algorithm using Java Data 

Structure Library (JDSL) [20].  

TinyOS modules include the implementations for the polynomial-

based weak authentication, Self-Certified ECDH protocol, AES 

encryption/decryption interface, and SDM scheme.  

 Polynomial-based weak authentication uses the big number 

operation in TinyECC 1.0 [5]. 

 Self-Certified ECDH uses the big number operation, scalar 

point multiplication operation, and point addition operation 

in TinyECC 1.0. 

 Because TinyOS does not provide an interface to use the 

hardware security component in CC2420, we develop an 

AES encryption/decryption interface that supports CTR, 

CCM, and CBC-MAC modes. Although hardware security in 

CC2420 only implements AES encryption (no AES 

decryption in hardware), the above three modes do not need 

AES decryption. 

 SDM scheme provides functions that encrypt new group keys 

and generate group key update messages on the controller 

node. It also provides functions that derive subset keys from 

subsets and pre-distributed keying materials, and decrypt 

new group key using the derived subset key. 

3.2.1.1 TinyECC 
Because both Self-Certified ECDH and polynomial-based weak 

authentication protocols are based on TinyECC [5], we would like 

to give a review on TinyECC. Elliptic curve cryptography (ECC) 

is an approach to public-key cryptography based on the algebraic 

structure of elliptic curves over finite fields. The hardness of 

solving elliptic curve discrete logarithm problem (ECDLP) allows 

several cryptographic schemes based on elliptic curves. TinyECC 

[5] is to provide a ready-to-use, publicly available software 

package for ECC-based PKC operations that can be flexibly 

configured and integrated into sensor network applications.  

TinyECC is implemented on TinyOS, which is a popular, open-

source OS for networked sensors. All the TinyECC components 

have nesC implementations, though some modules also include 

inline assembly code, which can be turned on for faster execution 

on some sensor platforms. This allows TinyECC to be compiled 

and used on any sensor platform that can run TinyOS. TinyECC 

 

Figure 6: System modules 



has been tested successfully on MICAz, TelosB, Tmote Sky, and 

Imote2. TinyECC adopts almost all existing optimizations for 

ECC operations. These optimizations can be turned on or off to 

balance the efficiency and the resource requirements.  

3.2.1.2 Self-Certified ECDH 
We implement Self-Certified ECDH protocol using the Big 

Number, scalar multiplication, and point addition operations in 

TinyECC. Our implementation consists of three components, 

Certificate Authority, controller node, and regular sensor node.  

The CA generates and distributes private keys and related 

parameters to all nodes in the network, including controller nodes 

and regular sensor nodes. In our experiment, the CA is 

implemented on a laptop. We assume the laptop is secure and 

won’t be compromised. Whenever we deploy a sensor node i, we 

run a java program to generate private key for node i and save the 

key in nesC code. Thus, when we compile and install the nesC 

code for node i, it can get its private key and related parameters 

for Self-Certified ECDH protocol. We use the bouncy castle 

provider for java [12] to provide the elliptic curve operations. 

A regular sensor node sends a request message to a controller 

node to run the Self-Certified ECDH protocol as the initiator. The 

controller node waits for incoming requests from newly deployed 

sensor nodes, and then runs the Self-Certified ECDH protocol. 

We implement both fixed key agreement algorithm and ephemeral 

key agreement algorithm in Self-Certified ECDH . 

3.2.1.3 Polynomial based Weak Authentication 
For polynomial-based weak authentication, we implement a java 

program to facilitate the operations of the CA on the laptop. First, 

it generates a polynomial and saves the coefficients of the 

polynomial in a symmetric matrix. Then, it generates polynomial 

share according to the node ID and saves polynomial share in 

nesC code. 

 

Figure 7: Network Admission Control procedure 

 

The Network Admission Control stage is shown in Figure 7. 

Controller nodes periodically broadcast their IDs. A sensor node i 

picks a controller node with the strongest signal strength (RSSI) 

and sends a request message to the controller node. This request 

message contains its Self-Certified ECDH public key Ui, nonce, 

and it’s ID. Node i also appends a HMAC using the pairwise key 

kic generated by the polynomial scheme. Once the controller node 

receives this request message, it evaluates polynomial share using 

i, derives the key kci, and verifies the HMAC. If the HMAC is not 

correct, it simply drops the request message. Otherwise, the 

controller node performs Self-Certified ECDH to establish a 

pairwise key, skci, with node i. Next, it sends back a reply 

message containing its Self-Certified ECDH public key Uc with 

one HMAC using kci and a new HMAC using skci. After some 

random delay, controller node c sends out the new group key 

encrypted by using key skci. At this time, node i should have 

finished its Self-Certified ECDH operations and obtained skic. 

Then node i decrypts new group key and configures its CC2420 

radio to use the new group key. 

3.2.1.4 Stateless Group Key Update 
The stateless group key update scheme consists of several 

components to implement SDM. Certificate Authority (CA) 

generates and saves the full binary tree for SDM in Java. Because 

JDK doesn’t provide binary tree data structure, we use the data 

structure library in java (http://www.jdsl.org/) [22] to implement 

the binary tree. The deployed sensor nodes don’t need to save the 

whole binary tree. For each sensor node i, CA generates nesC 

code that saves the labels in the binary tree for node i to derive 

subset key.  

The controller node has a copy of the latest group key update 

message, thus it knows which node has been revoked and which 

node is normal. We implement an algorithm to check which node 

is out-of-sync. The basic idea works as follows: whenever the 

controller node finds a packet MIC verification failure, if the 

source node ID is not in the revoked list, it records the node ID 

and increases a specific counter by one. Whenever the controller 

node finds a packet MIC verification success, if the source node 

ID is not in the revoked list, the controller node clears the counter 

for that node ID. Once the counter for a node ID is larger than a 

threshold (e.g., 20), the controller node sends the buffered group 

key update message to this node. In this way, we limit the 

message overhead for helping the out-of-sync nodes  obtain the 

new group key before the next round of group key update. 

3.2.1.5 Pairwise Key Based Group Key Update 
After a controller node and a sensor node establish a pairwise key 

using the Self-Certified ECDH protocol, the controller node uses 

simple push-based method to distribute current group key to the 

sensor node.  

For each sensor node kept in the controller node’s memory, the 

controller node retrieves the pairwise key shared with the regular 

one, encrypts and authenticates the current group key using the 

pairwise key, and sends the encrypted message to the regular node. 

The controller node starts a timer to wait for the ACK from the 

regular node. It will retransmit up to certain times before it 

receives an ACK (authenticated with the pairwise key) from the  

sensor node. Upon receiving a group key update message, a 

sensor node verifies the MIC and decrypts the message to retrieve 

the current group key. The sensor node performs the decryption 

operation and accepts the new group key only when the MIC can 

be verified correctly. Then, the sensor node sends an ACK 

message back to the controller node. The ACK message is  

authenticated with the pairwise key,  

After a sensor node obtains the current group key from the 

controller node, it will use the group key to protect its messages, 

verify and forward the messages from other nodes. Among many 

sensor network applications, it is more important to provide 

message authentication than message confidentiality, because we 

must guarantee the data collected from the sensor networks are 

http://www.jdsl.org/


sent from the eligible nodes and have not been modified by 

attackers. 

4. Performance Evaluation 
We use a small wireless sensor network with 7 Imote2 to evaluate 

the overhead and efficiency of our system. We set the following 

parameters in our system. For Elliptic Curve Cryptography, we 

use the secp160r1 parameter set [11]. We choose 128-AES for 

symmetric key cryptography. We run our system on Imote2 at 

four different frequencies: 13 MHz, 104 MHz, 208 MHz, and 416 

MHz. 

4.1 Code Size 
The code size of our system on Imote2 is shown in Table 1. 

Compared with the memory size of Imote2 (256 KB RAM, 32 

MB ROM), our system is small and affordable. 

Table 1. Code size on Imote2 

Graphics ROM (bytes) RAM(bytes) 

Controller 

module 
179,836 18,788 

Regular sensor 

module 
180,188 16,388 

4.2  Computation Time 
We measure the execution time of polynomial-based scheme and 

Self-Certified ECDH protocol, and show the results in Figure 8 

and Figure 9. We find that polynomial-based pairwise key 

establishment is very fast. It only needs around 2 ms to establish a 

pair-wise key using the polynomial-based key establishment 

scheme. It is 425 times faster than the fixed key establishment 

algorithm and 700 times faster than the ephemeral key 

establishment algorithm in Self-Certified ECDH. It explains why 

polynomial-based weak authentication can mitigate DoS attacks 

against Self-Certified ECDH. 

The computation delay in our system is shown in Figure 10. 

Request–ack is the waiting time for a regular sensor node from 

sending out a request message to receiving a reply message from a 

controller node. ECDH key establish is the time to compute Self-

Certified ECDH key. Group key msg process is the time for the 

regular node to decrypt new group key using the pairwise key 

generated in Self-Certified ECDH. The above three computation 

processes only happen when a sensor node joins a sensor  network 

for the first time. Revoke msg process is the time for a sensor node 

to derive the subset key and decrypt the new group key using 

SDM. When we run the sensor nodes in higher frequency, we can 

reduce the computation delay accordingly. However, when we test 

the sensor nodes using 416 MHz frequency, we find that the nodes 

are not very stable due to the high frequency setting. 

The partial packet transmission delay caused by CC2420 

hardware security operations is shown in Figure 11. The delay 

introduced by the security operations is small. The packet payload 

size is 25 bytes, which is reasonable and efficient. We notice that 

the most expensive operation CCM mode is 1.38 times slows than 

the packet transmission without any security operation.  

 

Figure 8. Time delays in polynomial-based scheme 

 

Figure 9. Time delay in Self-Certified ECDH 

 

Figure 10. Computation delay 

Figure 11. Packet transmission time in CC2420 

 



4.3 Packet Communication Delay 
The communication delays for three different security modes are 

listed in Table 2. In our experiment, we add 8 bytes as MIC in the 

CBC-MAC, which will introduce 0.256 ms of delay for 

transmitting the extra bytes through the radio. 

Table 2. Packet communication delay 

 

4.4 Energy Consumption 
Because the computation and communication overhead of our 

secure system is very small, the extra energy consumption 

introduced by our secure system is small too. For the PXA271 

microprocessor on Imote2 sensor nodes, it costs 390 uA in deep 

sleep mode, and 44 mA (13MHz) and 66 mA (104MHz) in active 

mode. For the CC2420 radio which is designed for very low 

current consumption, it only costs18.8 mA in receiving mode and 

17.4 mA in transmitting mode. 

5. Conclusion 
In this paper, we have presented a prototype of secure network 

access control system in wireless sensor networks. Our design and 

implementation have successfully proven the feasibility of the 

proposed technical approaches. As our future work, we will 

extend the secure access system to support large wireless mesh 

networks. 
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