
12

A Framework for Identifying Compromised
Nodes in Wireless Sensor Networks

QING ZHANG, TING YU, and PENG NING
North Carolina State University

Sensor networks are often subject to physical attacks. Once a node’s cryptographic key is com-
promised, an attacker may completely impersonate it and introduce arbitrary false information
into the network. Basic cryptographic mechanisms are often not effective in this situation. Most
techniques to address this problem focus on detecting and tolerating false information introduced
by compromised nodes. They cannot pinpoint exactly where the false information is introduced

and who is responsible for it.
In this article, we propose an application-independent framework for accurately identifying

compromised sensor nodes. The framework provides an appropriate abstraction of application-
specific detection mechanisms and models the unique properties of sensor networks. Based on the
framework, we develop alert reasoning algorithms to identify compromised nodes. The algorithm
assumes that compromised nodes may collude at will. We show that our algorithm is optimal in
the sense that it identifies the largest number of compromised nodes without introducing false
positives. We evaluate the effectiveness of the designed algorithm through comprehensive experi-
ments.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—
Security and protection; K.6.5 [Management of Computing and Information Systems]: Secu-
rity and Protection

General Terms: Algorithms, Security

Additional Key Words and Phrases: Sensor networks, intrusion detection

ACM Reference Format:

Zhang, Q., Yu, T., and Ning, P. 2008. A framework for identifying compromised nodes in wireless
sensor networks. ACM Trans. Inf. Syst. Secur. 11, 3, Article 12 (March 2008), 37 pages. DOI =
10.1145/1341731.1341733. http://doi.acm.org 10.1145/1341731.1341733.

Based on “A Framework for Identifying Compromised Nodes in Wireless Sensor Networks” by
Qing Zhang, Ting Yu, Peng Ning which appeared in Proceedings of 2nd International Conference on

Security and Privacy in Communication Networks (SecureComm), Baltimore, MD c© 2006 IEEE.
The work of Zhang and Yu was partially supported by the National Science Foundation (NSF) un-
der grants IIS-0430274. Ning’s work was supported by the NSF under grants CAREER-0447761
and CNS-0430223.
Authors’ address: Cyber Defense Laboratory, Department of Computer Science, North Carolina
State University, Raleigh, NC 27695; emails: {qzhang4, yu, pning}@ncsu.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal or
classroom use provided that the copies are not made or distributed for profit or commercial advan-
tage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice
is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post
on servers, or to redistribute to lists requires prior specific permission and/or a fee. Permission
may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY
10121-0701, USA, fax +1(212)869-0481, or permissions@acm.org.
c© 2008 ACM 1094-9224/2008/03-ART12 $5.00 DOI: 10.1145/1341731.1341733. http://doi.acm.org

10.1145/1341731.1341733.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

12: 2 · Zhang et al.

1. INTRODUCTION

Compared with traditional wired and wireless networks, low-power wireless
sensor networks can be rapidly deployed in a large geographical area in a
self-configured manner. This makes them particularly suitable for real-time,
large-scale information collection and event monitoring for mission-critical
applications in hostile environments, such as target tracking and battlefield
surveillance.

Such applications, meanwhile, impose unique security challenges. Because
sensors are extremely resource constrained, many existing security mecha-
nisms cannot be directly applied to sensor networks [Perrig et al. 2001]. In
recent years, we have witnessed great efforts toward designing security prim-
itives specific for wireless sensor networks. For example, a variety of authen-
tication and key management schemes have been proposed and implemented
[Camtepe and Yener 2004; Liu et al. 2005]. On the other hand, because sen-
sors are often deployed in open environments, they are vulnerable to physical
attacks. Once recovering the keying materials of some nodes, an adversary
is able to impersonate them completely and inject arbitrary false informa-
tion. Basic cryptographic mechanisms, such as authentication and integrity
protection, are usually not effective against such impersonation attacks
[Du et al. 2005].

Recently, several approaches have been proposed to cope with compromised
nodes. These approaches mainly fall into two categories. Approaches in the
first category are to detect and tolerate false information introduced by attack-
ers [Du et al. 2003a; Hu and Evans 2003; Przydatek et al. 2003; Ye et al. 2004],
in particular during data aggregation. Once the base station receives aggre-
gated data, it checks their validity through mechanisms such as sampling and
deployment of redundant sensors. However, these techniques often cannot be
used to identify where the false information is introduced and who is respon-
sible for it.

Approaches in the second category rely on application-specific detection
mechanisms that enable sensor nodes to monitor the activities of others
nearby. Once an abnormal activity is observed, a node may raise an alert either
to the base station or to other nodes, who further determine which nodes are
compromised. We call approaches in this category alert based. Representative
alert based approaches include those in sensor network routing [Ganeriwal
and Srivastava 2004] and localization [Liu et al. 2005].

Alerts from sensor nodes make it possible to pinpoint compromised nodes.
However, how to effectively use such information is a very challenging prob-
lem. It is hard to decide whether an alert can be trusted because it is very
likely that compromised nodes raise false alerts to mislead the base station
and other nodes. Compromised nodes may further form a local majority in
the network and collude, increasing their influences in the network. Further,
existing alert-based approaches are specific to certain applications and can-
not be easily extended to other domains. A general solution to the accurate
identification of compromised nodes still remain elusive.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

A Framework for Identifying Compromised Nodes in Wireless Sensor Networks · 12: 3

The problem of identifying compromised nodes shares certain similarity
with fault diagnosis in diagnosable systems [Araki and Shibata 2003; Dahbura
and Masson 1984; Fuhrman 1996; Preparata et al. 1967; Sullivan 1988]. How-
ever, in those systems, faults are assumed to be permanent, which means
a faulty node will always fail a test and thus can always be identified by
fault-free nodes. Some later works relax permanent faults to intermittent
faults [Dahbura et al. 1987; Kozlowski and Krawczyk 1991], which however
still assume that a faulty node cannot pass a test following certain proba-
bilities. These assumptions do not hold in sensor networks, where a compro-
mised node may behave arbitrarily. For example, it may always report correct
sensing data and meanwhile issue false alerts. Such malicious behavior can-
not be observed by an uncompromised node. Thus, we cannot directly apply
works in self-diagnosable systems to identify compromised nodes in sensor
networks.

The problem of false alerts (or feedback) and collusion from malicious enti-
ties also arises in other decentralized systems, such as online auction commu-
nities and P2P systems [Aberer and Despotovic 2001; Kamvar et al. 2003; Lee
et al. 2003; Mui et al. 2002; Richardson et al. 2003; Xiong and Liu 2002; Yu and
Singh 2002]. Reputation-based trust management has been adopted as an ef-
fective means to form cooperative groups in the above systems. One seemingly
attractive approach is to apply existing trust management techniques in sen-
sor networks. For example, we may identify sensor nodes with the lowest trust
values as compromised. However, as a decentralized system, sensor networks
bear quite unique properties and significantly differ from the above systems.
Many assumptions in reputation-based trust management do not hold in sen-
sor networks. Thus, simply applying those techniques is unlikely to be effective
(see Section 4 for a detailed experimental comparison).

For example, in P2P systems, interactions may happen between any two en-
tities. If an entity provides misleading information or poor services, it is likely
that some other entities will be able to detect it and issue negative feedback
accordingly. The interactions between sensor nodes, however, are restricted
by the deployment of a sensor network. For a given node, only a fixed set of
nodes is able to observe it. Thus, it is easy for compromised nodes to form local
majorities.

Also, most decentralized environments are composed of autonomous enti-
ties, which pursue to maximize their own interests. Incentive mechanisms are
needed to encourage entities to issue (or at least not discourage them from issu-
ing) feedback about others. A sensor network, on the other hand, is essentially
a distributed system, where all the sensor nodes are designed to cooperate and
finish a common task. Therefore, it is possible to design identification mech-
anisms that achieve global optimality for a given goal. For instance, to cope
with false alerts, we may choose to identify as compromised both the target
and the issuer of an alert, as long as it will improve the security of the whole
system. Such an approach is usually not acceptable in P2P systems and online
auction communities.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

12: 4 · Zhang et al.

Indeed, the unique properties of sensor networks bring both challenges and
opportunities. How to accommodate and take advantages of these properties
is the key to the accurate identification of compromised nodes.

In this article, we propose novel techniques to provide general solutions to
the identification of compromised sensor nodes. Our techniques are based on
an application-independent framework that abstracts some of the unique and
intrinsic properties of sensor networks. Therefore, it can be used to model a
large range of existing sensor network applications. In summary, the contribu-
tions of this article include the following:

(1) We develop an application-independent framework for identifying compro-
mised nodes based on alerts generated by specific detection mechanisms
in sensor networks. The central component of the framework is an ab-
straction of the monitoring relationship between sensor nodes. Such re-
lationship can be derived from application specific detection mechanisms.
The framework further models sensor nodes’ sensing and monitoring ca-
pabilities and their impacts on detection accuracy. We show by example
that many existing sensor networks can be easily modeled by the proposed
framework. As our framework is built on the alert-based detection mecha-
nisms provided by applications, it does not require sensor nodes to support
additional functionalities, nor does it impose additional communication
and computation costs to the network.

(2) Based on the proposed framework, we design an alert reasoning algorithm
to accurately identify compromised sensor nodes. The algorithm does not
rely on any assumptions on how compromised nodes behave and collude.
We show that the algorithm is optimal, in the sense that, given any set of
alerts, our algorithm identifies the largest number of compromised nodes
that can generate these alerts, without introducing any false positives. We
also study how to trade off certain false positives to further eliminate com-
promised nodes.

(3) To better understand the capability of the above reasoning algorithm, we
further consider a special case where all the compromised nodes actually
collude with each other (i.e., they behave consistently and do not raise
alerts against each other). We develop an identification algorithm when
assuming the base station is aware of such collusion. The identification
capability of this special algorithm serves as an upper bound for that of the
general algorithm.

(4) We conduct comprehensive experiments to evaluate the proposed algo-
rithm. The results show that it yields high detection rates and bounded
false: positive rates and thus is effective in identifying compromised nodes.

The rest of the article is organized as follows. Section 2 presents a general
framework for identifying compromised nodes and shows how sensor network
application can be modeled by the framework. In Section 3, we present algo-
rithms that identify compromised sensor nodes with optimal accuracy, for both
the collusion and noncollusion cases. In Section 4, we show the effectiveness
of our algorithms through experimental evaluation. Some relevant issues are

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

A Framework for Identifying Compromised Nodes in Wireless Sensor Networks · 12: 5

Fig. 1. The deployment of beacon nodes in sensor network localization.

discussed in Section 5. Section 6 reports closely related work to this paper.
Concluding remarks are given in Section 7.

2. A GENERAL FRAMEWORK FOR IDENTIFYING COMPROMISED NODES

In this section, we first use an example to identify the aspects of sensor net-
works that are relevant to the identification of compromised nodes. We then
present the general framework.

2.1 An Example Sensor Network Application

Many sensor network applications require sensors’ location information (e.g.,
in target tracking). Because it is often too expensive to equip localization de-
vices such as GPS receivers on every node, many location discovery algorithms
depend on beacon nodes, that is, sensor nodes aware of their locations. A
nonbeacon node queries beacon nodes nearby for references and estimates
its own location. An example deployment of the sensor network is shown in
Figure 1, where beacon nodes and nonbeacon nodes are represented by square
and round nodes, respectively. An edge from a beacon node b to a nonbeacon
node s indicates that b can provide location references to s.

A compromised beacon node may claim its own location arbitrarily, making
nonbeacon nodes around derive their locations incorrectly. Liu and colleagues
[2005] proposed a mechanism to detect malicious beacon nodes. The basic idea
is to let beacon nodes probe each other and check the sanity of the claimed lo-
cations. Suppose beacon node b1’s location is (x, y) and beacon node b2 claims
its location to be (x′, y′). If the difference between the derived distance and the
measured distance exceeds a threshold ǫ, then b1 will consider b2 as compro-
mised and report to the base station. Clearly, a compromised beacon node may
also send false alerts to the base station.

After receiving a set of alerts from beacon nodes, what information is needed
by the base station to make a rational decision on compromised nodes? First,
the base station has to know whether an alert is valid, that is, whether beacon

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

12: 6 · Zhang et al.

nodes b1 and b2 are close enough so that they can probe each other. In other
words, the monitoring relationship between beacon nodes is needed.

Second, due to the imprecision of distance measuring, it is possible that an
uncompromised beacon node raises an alert against another uncompromised
one. The base station has to take this possibility into consideration.

Third, it is necessary to regularly probe a beacon node so that it can be
detected promptly if that beacon node is compromised and provides misleading
location references.

The above information is quite relevant for the base station to reason about
compromised nodes and is commonly available in sensor network applications.
Thus, it should be included by a general framework for identifying compro-
mised nodes.

2.2 Assumptions

We make the following assumptions about sensor network applications before
presenting a general framework for identifying compromised nodes.

First, we assume there exist application-specific detection mechanisms de-
ployed in a sensor network that enable sensor nodes to observe each other’s
behavior. Such detection mechanisms are commonly employed in sensor net-
works. Examples include beacon node probing in sensor network localization
as mentioned above, witnesses in data aggregation [Du et al. 2003a], and the
watchdog mechanism [Ganeriwal and Srivastava 2004]. A sensor node s1 is
called an observer of another node s2 if s1 can observe the behavior of s2. A
node may have multiple observers or observe multiple other nodes.

The detection mechanisms are not assumed to be completely accurate. But
we do assume that, given a sufficient number of observations of the same node,
the number of alerts issued by two uncompromised observers should be statis-
tically consistent. In other words, if a node’s behavior during a time period T is
abnormal, then all the uncompromised observers should raise a significantly
high number of alerts during T. Whether the number of alerts is significantly
high depends on the characteristics of the sensor node and the detection mech-
anism, which will be discussed in Section 2.3.

Second, we focus on static sensor networks, where sensor nodes do not
change their locations dramatically once deployed. A large range of sensor
networks fall into this category, for example, target tracking and environmen-
tal monitoring. One consequence of this assumption is that the observability
relationship between sensor nodes does not change unless a sensor network is
reconfigured.

Third, we assume that message confidentiality and integrity are protected
through key management and authentication mechanisms [Du et al. 2003b],
so that a sensor node can send information securely and reliably to the base
station. Several techniques have been proposed in the literature to ensure the
availability of such channels [Bose et al. 2001; Deng et al. 2004].

Finally, we assume the base station of a sensor network is trusted and has
sufficient computation and communication capabilities. Hence, we adopt a cen-
tralized approach, where the base station is responsible for reasoning about
the alerts and identifying compromised nodes. The responsibility of each node

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

A Framework for Identifying Compromised Nodes in Wireless Sensor Networks · 12: 7

is only to observe abnormal activities and raise alerts to the base station. We
will briefly discuss decentralized approaches in Section 5, where sensor nodes
also take part in the reasoning and identification process.

2.3 The Framework

With the above assumptions, a general framework for identifying compromised
nodes is composed of the following components:

—Observability graph. An observabi directed graph G(V, E), where V is a set
of vertices that represent sensor nodes and E is a set of edges. An edge
(s1, s2) ∈ E if and only if s1 is an observer of s2. An observability graph is de-
rived from the detection mechanism of an application. V contains only those
nodes whose security is concerned and is involved in the underlying detec-
tion mechanism. For example, in the sensor network localization problem,
the observability graph includes only beacon nodes.

—Alerts. An alert takes the form (t, s1, s2), indicating that node s1 observes
an abnormal activity of s2 at time t. The information in an alert may be
further enriched, for example, by including s1’s confidence on the alert. For
simplicity, we omit such parameters in this article. Note that alerts may
not need to be explicitly sent by sensor nodes. Instead, in some applications
they can be implicitly inferred by the base station from the sensing data sent
by sensor nodes (e.g., when the reported data of two adjacent sensor nodes
differ than a certain threshold).

—Sensor behavior model. Sensors are not perfect. Even if a node is uncom-
promised, it may still occasionally report inaccurate information or behave
abnormally. A sensor behavior model includes a parameter rm that repre-
sents the percentage of normal activities conducted by an uncompromised
node. We call rm the reliability of sensors. For example, in sensor network
localization, if rm = 0.99, then 99% of the time, an uncompromised beacon
node provides the correct location references.

—Observer model. Similarly, an observer model represents the effectiveness of
the detection mechanism of a sensor network, which is captured by its ob-
servability rate rb (i, j), positive accuracy rp, and negative accuracy rn. Sup-
pose s1 is an observer of s2. rb (1, 2) is the probability that s1 observes an
activity conducted by s2. This reflects the fact that, in some applications,
due to cost, energy concerns, and distance between nodes, s1 may not be able
to observe every activity of s2. For simplicity, in this article we use a global
rb value between all pairs of nodes. The positive accuracy rp is the proba-
bility that s1 raises an alert when s2 conducts an abnormal activity observed
by s1. Similarly, rn is the probability that s1 does not raise an alert when
s2 conducts a normal activity observed by s1. rp and rn reflect the intrinsic
capability of a detection mechanism.

The sensor behavior model and the observer model can usually be obtained
from the specification of sensors and an application’s detection mechanisms.

—Security estimation. If it is possible that all the nodes in the network are
compromised, then the base station cannot identify definitely which nodes

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

12: 8 · Zhang et al.

are compromised based on alerts. Therefore, this framework focuses on the
situation where the number of compromised nodes does not exceed a certain
threshold K. We call K the security estimation of a network. How to de-
termine K is application specific, depending on, for example, the estimation
of attackers’ capability, the strength of sensors’ keys, and how long the net-
work has been deployed. We emphasize that K is only an upper bound of the
number of compromised nodes. The base station does not need to know the
exact number of compromised nodes in a network.

—Identification function. An identification function F determines which nodes
are compromised. Formally, it takes as inputs the observability graph G, the
sensor reliability rm, the observer model (rb , rp, rn), the security estimation
K, and a set of alerts raised during a period T, and returns a set of node IDs,
which indicate those nodes that are considered compromised.

We note that our framework is built on the alert-based detection mecha-
nisms provided by applications. The framework itself does not require sensor
nodes to support additional functionalities and thus does not introduce addi-
tional communication and computation costs to the network.

Further, for simplicity, the above framework assumes that all the nodes and
observers follow the same sensor behavior model and observer model. In some
applications, there may be different types of sensor nodes with different sens-
ing and observing capabilities. Our framework can be easily extended to model
such applications by specifying different models for different types of sensor
nodes.

With the above framework, there are two key problems: first, whether it is
easy to model sensor network applications using the framework; and second,
how to design efficient and accurate identification functions.

2.4 The Applicability of the Framework

The above framework is application independent and thus can be used to model
a large range of sensor networks. In this section, we use two examples to show
its applicability.

Example 1: Localization in Sensor Networks. The approach for detecting
compromised beacon nodes [Liu et al. 2005] described in Section 2.1 can be
modeled by our framework as follows.

(1) Observability graph. The vertices of the observability graph include only
beacon nodes. There is a bidirectional edge between two beacon nodes, if
they are close enough to probe each other. (Note that a detecting beacon
node has to use a pseudoID to prevent a compromised beacon node from
recognizing a probing query.) Figure 2 shows the observability graph cor-
responding to Figure 1.

(2) Alerts. If at time t a beacon node b1 detects a bogus location claimed by a
nearby beacon b2, it will send an alert (t, b1, b2) to the base station.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

A Framework for Identifying Compromised Nodes in Wireless Sensor Networks · 12: 9

Fig. 2. The observability graph of sensor network localization.

(3) Sensor behavior model. The probability that an uncompromised bea-
con claims an incorrect location is determined by the resolution and the
accuracy of the localization device. Let (x, y) be a beacon’s actual location
and (x′, y′) be its measured location. Assume x′ − x and y′ − y follow normal
distribution N(0, σ 2). Then the distribution of the distance d between (x, y)
and (x′, y′) can be computed from bivariate transformation as d

2π2σ 2 e−d2/2σ 2
.

Suppose a beacon node is considered defective if d is larger than a prede-
fined threshold ǫ. Then the reliability of beacon nodes is rm = P(d < ǫ).

(4) Observer model. Because a probe is always initiated by an observer, the
observability rate of beacon nodes is rb = 1. A beacon node’s positive and
negative detection rates can be derived from the given parameters of the
detector. Specifically, the negative detection rate is the possibility when a
benign beacon nodes reports correct location information and its observer
does not raise any alert. Liu and colleagues [2005] proposed the false posi-
tive rate P fp as a parameter of the detector, which is the rate that a benign
beacon node raises alerts against another benign beacon node. So we have
the negative detection rate rn = 1 − P fp. The positive detection rate is the
probability that the observer successfully detects it when a malicious bea-
con nodes provides false location data. This is the same as the detection
rate Pr as defined by Liu and colleagues [2005].

Because each observer probes a beacon node independently, one potential
risk is that the beacon node may behave different to different observers, so
that the number of alerts from different observers will be significantly different
statically. This will make the first assumption in Section 2.2 not valid anymore.

As mentioned above, the scheme of Liu and colleagues requires a detect-
ing beacon node to use a completely new pseudoID for each probe. Therefore,
a malicious beacon node cannot distinguish probes from different observers.
Therefore, the number of alerts from uncompromised observers should still be
statistically consistent during a period of time.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

12: 10 · Zhang et al.

We intentionally omit the discussion of identification functions when mod-
eling the above application with the proposed framework because their work
cannot handle false alerts from compromised nodes. Though inconsistencies
between alerts may be discovered, no solution is provided to reason which
nodes are compromised. We will show how to design an efficient identifica-
tion function based on the above framework in the next section. Before doing
so, we use another example to further demonstrate how to map a real sensor
network application to the proposed framework.

Example 2: Sensor Network Data Fusion. Data fusion is a common tech-
nique to reduce communication in sensor networks. Instead of having all the
raw data sent to the base station, they are sent to nearby data fusion nodes,
which aggregate them and forward the result further to the base station. Com-
promised data fusion nodes may send bogus aggregated information to the base
station. Du and colleagues [2003a] proposed a witness-based mechanism to de-
tect compromised data fusion nodes. The basic architecture of their approach
is shown in Figure 3a. For a set of sensor nodes, there are one dedicated data
fusion node and several witness nodes, all of which can receive sensing data
from sensor nodes in the set. A witness node performs the same aggregation as
the data fusion node, but only forwards the MAC of the result (using its shared
key with the base station) to the data fusion node. The data fusion node then
sends its result along with the witnesses’ MACs to the base station. The base
station checks the consistency between the data fusion node’s result and the
MACs of witnesses. This scheme assumes a shared secret key between each
witness and the base station. So only the base station can check whether a
MAC agrees with the data fusion result. Clearly, if a witness is compromised,
it may also send bogus MACs.

This scheme can be modeled by our framework as follows.

(1) Figure 3(b) shows the observability graph corresponding to Figure 3(a). If
there is a disagreement between the data fusion node and a witness, it is
equivalent that they raise alerts against each other. In the article by Du
and colleagues [2003a], sensor nodes collecting raw data are assumed to
be trusted. Therefore, the observability graph contains only data fusion
nodes and witnesses. The observability graph will be more complicated
if we consider the situation where a node may serve as a witness or an
aggregator for more than one set of sensors.

(2) Alerts. If the MAC of a witness w1 does not agree with the reported aggre-
gation result of the data fusion node d f for an event happened at time t,
the base station can derive two alerts, (t, w1, d f) and (t, d f , w1).

(3) Sensor behavior model. We need to derive the reliability rate only for the
data fusion node and witnesses. Suppose the communication channels be-
tween sensor nodes are reliable. Then the data fusion node and witness
nodes will always receive the same data from the sensor node and get the
same aggregation results. Thus, the reliability rm of the data fusion node
and the witness nodes is 1.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

A Framework for Identifying Compromised Nodes in Wireless Sensor Networks · 12: 11

Fig. 3. Observability graphs for the data fusion example.

(4) Observer model. If we assume the communication channels between sensor
nodes are reliable, then the data fusion node and the witness nodes will
always send data to the base station when an event happens. Thus the
observability rate rb = 1. The positive accuracy is the probability that the
MAC sent by an uncompromised witness does not agree with the bogus
aggregation result from a compromised data fusion node, which equals to
1−2−k, where k is the length of the MAC. The negative detection rate is the
probability that the MAC from an uncompromised witness matches with
the aggregation result from an uncompromised data fusion node, which
equals to rm.

Similar to the previous example, we omit the discussion of identification
functions here, as their work cannot identify the compromised nodes either. In
the following, we are going to present our approach to identifying compromised
sensor nodes based on the above framework. Generally, we first derive the ex-
pected alert pattern from the sensor behavior model and observer model. Then,
by comparing with the actual set of alerts, we identify those alerts that deviate
from the expected behavior as abnormal. Finally, combining this information
with the observability relationship, we design efficient identification functions
such that the largest number of compromised nodes will be identified.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

12: 12 · Zhang et al.

3. IDENTIFICATION OF COMPROMISED NODES

In this section, we present our approach to identifying compromised sensor
nodes based on the above framework.

3.1 Overview of System Architecture

Let si be an observer of sj. For each event at sj, si will determine whether sj has
behaved correctly. If si believes sj’s behavior is suspicious, then an alert will be
raised and sent back the base station. Here an event at sj can be any behavior
that the underlying detection system is interested in, according to different ap-
plications. For example, it can be a temperature value that sj reports about the
environment, or the fact that sj has routed a packet for others, or the location
information from sj in response to the disguised beacon node si. Note that the
functionalities of event monitoring, alert generation, and transmitting back
to the based station are executed by the underlying detection mechanism, not
by our model. Thus no additional communication and computation costs are
imposed on the network.

In an ideal network, where the detection mechanism is completely accurate
and the sensing and observing capabilities of sensor nodes are perfect, if si

raises an alert against sj, then at least one of them is compromised. Otherwise,
if both behave normally, there should be no alerts between them. However,
sensors are not assumed to have perfect sensing and monitoring capabilities.
Therefore, the base station cannot draw any definite conclusion from a single
alert. Instead, it needs to observe the alert pattern during a certain period
of time to discover suspicious activities with high confidence. For this reason,
the base station breaks the total operation time of the network into time inter-
vals (each called a time window), and it reviews and reasons the alerts issued
within each time window.

Within a given time window, the number of events of sj is a random variable
x, with a distribution f j(x). Given the sensor behavior model of sj, observer
model of si, and f j(x), we can derive the expected number of alerts raised by si

against sj in the time window when both of them are uncompromised. Then the
base station can compare the number of alerts actually raised by si against sj

with the expected number within this window. Only when the former is higher
than the latter with statistical significance should the base station consider it
as abnormal.

For each pair of nodes that are considered abnormal, the base station will
record an edge correspondingly in the observability graph (called an abnormal

edge). As the base station has the knowledge of the global sensor topology,
it can combine this information with all abnormal edges at hand to do further
inference. Finally, we propose effective algorithms to reason the inferred graph
and identify the compromised nodes.

Next, we will describe how the system works in details.

3.2 Alert Aggregation

Suppose sj is a good node that functions normally according to the sensor be-
havior model, and si is a good observer to sj; thus, its behavior follows the

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

A Framework for Identifying Compromised Nodes in Wireless Sensor Networks · 12: 13

observer model. For every event at sj, with probability rm it will behave cor-
rectly. The observer si can detect sj’s behavior with probability rb , and the
probability that it issues a false alert stating that sj behaves inappropriately
is 1 − rn, according to the observer model. With probability 1 − rm, sj will make
mistakes, and si can detect this and issue a correct alert with probability rp.
These are the only two possibilities that si will raise an alert against sj on a
single event. Overall, the probability that si raises an alert against sj on this
single event is given by C = rb · ((rm · (1 − rn) + (1 − rm) · rp). We interpret this
as for each single event at sj, there will be C alerts associated with it from si

to sj. In the sensor network localization, for example, each event is a probe
from one beacon node to another beacon node. As shown in section 2.4, rb = 1,
rm = P(d < ǫ), rn = 1− P fp, and rp = Pr. So C = P(d 6 ǫ) · P fp +(1− P(d < ǫ)) · Pr.

Let x denote the number of events at sj within a time window T, which is
a random variable, and f j(x) be the distribution of x. Then the distribution of
alerts along the edge (si, sj) (i.e., those raised by si against sj) will be fij(x) =
f j(

x
C

). The expected number of alerts along (si, sj) during the same period t will

be Rij(t) = C
∫ t

fij(x).
During the time window T, if the number of alerts along the edge (si, sj) is

over Rij(T) + δ, then we say the edge (si, sj) is an abnormal edge in the observ-
ability graph. Otherwise, (si, sj) is normal. An abnormal edge can be inter-
preted as a definite claim from si that sj is compromised. Similarly, a normal
edge represents si’s endorsement that sj is not compromised. Here the para-
meter δ > 0. Given the distribution of the expected number of alerts during
T, δ can be computed as the x% confidence that the number of alerts is con-
sidered to be excessive. We leave the decision of x% to applications, as some
applications may require a conservative reasoning, while others may not. The
base station can even assign different x% to different observers according to
their location, environment, functionality, and so on. We will not elaborate the
details because they are highly application specific.

Our framework does not require the number of events of sj monitored by
each observer si to be the same. This will accommodate the underlying detector
model to the largest extent. For example, in the beacon node application [Liu
et al. 2005], different beacon nodes may probe a target beacon node different
times within each time window. So the event distribution of sj observable to
si is different for each node si. But we can still derive the expected number of
alerts along each edge (si, sj) and tell if the edge is abnormal or not using the
above reasoning.

Note that it is possible that sj is not compromised but malfunctioning. But
in this case we treat sj as compromised anyway because information or services
from sj cannot be trusted anymore.

3.3 Graph Inference

Given a set of abnormal and normal edges, many existing trust functions in
the literature can be applied to infer each sensor node’s trustworthiness. How-
ever, because those functions are designed for general decentralized systems,
they do not take into consideration the interaction topology between sensor

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

12: 14 · Zhang et al.

Fig. 4. An observability graph and its corresponding inferred graph.

nodes, which in fact provides valuable information to directly identify com-
promised sensor nodes. For example, suppose that there are no more than k

compromised sensor nodes in a sensor network. If more than k abnormal edges
involve a sensor node s, then we can know for sure that s is compromised. How
to take advantage of such information to more effectively identify compromised
sensor nodes is the focus of the rest of the paper.

Given an abnormal edge (si, sj), either si is compromised and raises many
bogus alerts against sj, or sj is compromised and its malicious activities are
observed by si, or both. Otherwise, the edge should be normal. Further sup-
pose there is an additional normal edge (sl, sj). Then one of si and sl must be
compromised. Otherwise, the two edges should be consistent with each other
because sl and si observe the activities of the same node sj during the same pe-
riod of time, according to our assumptions in Section 2.2. Information of such
inconsistency is essential to identify compromised nodes.

Definition 3.1. Given an observability graph G(V, E), let Ea and En be the
set of abnormal edges and normal edges in G respectively. We say that two
sensor nodes si and sj form a suspicious pair if one of the following holds:

(1) (si, sj) ∈ Ea or (sj, si) ∈ Ea

(2) There exists a sensor node s′, such that either (si, s′) ∈ Ea and (sj, s′) ∈ En

or (si, s′) ∈ En and (sj, s′) ∈ Ea.

Let {s1, s′
1}, ..., {sk, s′

k} be the suspicious pairs derived from an observability
graph G. The inferred graph of G is an undirected graph I(V ′, E′) such that
V ′ =

⋃
1≤i≤k{si, s′

i} and E′ = {{si, s′
i} | 1 ≤ i ≤ k}.

Intuitively, if (si, sj) are a suspicious pair, then at least one of them is com-
promised. Note that if a pair of nodes is not suspicious, it does not mean that
they are both uncompromised. It only means we cannot infer anything about
them.

The left part of Figure 4 shows an observability graph, where abnormal and
normal edges are represented by solid and dashed edges, respectively. The
corresponding inferred graph is shown in the right part of the figure. Note
that an inferred graph may not be connected.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

A Framework for Identifying Compromised Nodes in Wireless Sensor Networks · 12: 15

From the figure, one may wonder that, because (2, 1) is normal and (2, 5) is
abnormal, shouldn’t {1, 5} be a suspicious pair too? The answer is no because
it is possible that node 2 is compromised and selectively issues bogus alerts
against node 1 but not node 5, even though both node 1 and 5 are uncom-
promised. Similarly, a compromised node may sense data normally but issue
bogus alerts or vice versa. So {1, 3} is not a suspicious pair even though (3, 2) is
abnormal and (2, 1) is normal. In other words, transitivity does not hold when
constructing suspicious pairs.

Definition 3.1 in fact offers two inference rules to identify pairs of sensor
nodes such that at least one of them is compromised. A natural question is
whether the two inference rules are complete. In other words, are there any
other existing suspicious pairs that cannot be identified using the above two
inference rules? The answer is no unless we impose further assumptions re-
garding the behavior of a compromised node.

A node s takes multiple responsibilities in a sensor network. Besides act-
ing as a common sensor node, it also acts as observers of several other nodes
s1, . . . , sk. Without any assumptions on the application of the sensor network,
a compromised node may behave arbitrarily when fulfilling different responsi-
bilities. As the above example shows, a node may report false sensing data and
meanwhile act normally as an observer, or vice versa. It may also issue bogus
alerts to one node but not to others. Thus, the behavior of s in a time window
can be represented as a vector behave(s) = (sensing(s), obs(s, s1), . . . , obs(s, sk)).
Each element in the vector can take the value of either g or b , corresponding to
normal and abnormal behavior since respectively. A behavior of s is an assign-
ment of values to the vector of s. Note that, because a compromised node may
behave arbitrarily, there is no correlation between the value of each element.
They can be assigned independently. Clearly, if at at least one of the elements
in the vector must be assigned to b , then the node should be considered to be
compromised. Otherwise, the node is considered as uncompromised, as long as
there exist assignments that all its elements can be set to g.

Let G(V, E) be an observability graph marked with normal and abnormal
edges and B = {behave(s1), . . . , behave(sn)} be a set of behaviors of all the nodes
in G. We say B is consistent with G if the two conditions in Definition 3.1 are
satisfied. That is, if there is an abnormal edge (s1, s2), then either sensing(s2) =
b or obs(s1, s2) = b . Further, if (s1, s) is normal and (s2, s) is abnormal, then
either obs(s1, s) = b or obs(s2, s) = b .

THEOREM 3.2. If two nodes s1 and s2 are not identified as a suspicious pair

by Definition 3.1, then there exists a consistent set of behaviors of all the nodes

where both s1 and s2 are uncompromised.

PROOF. We first construct a consistent behavior set B as follows. For each
node s, we set sensing(s) = g. For each abnormal edge (s′, s), let obs(s′, s) = b .
For each normal edge (s′′, s), let obs(s′′, s) = g. It is easy to see that the resulting
behavior set is consistent.

If in B both s1 and s2 are uncompromised, that is, all elements in behave(s1)
and behave(s2) are assigned g, then we are done. Otherwise, s1 must have
an element obs(s1, s′) that is assigned to b . Consider each node s′ such that

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

12: 16 · Zhang et al.

obs(s1, s′) = b . Because s1 and s2 are not identified as a suspicious pair by
definition 3.1, s′ 6= s2. If s2 is also an observer of s′, we must have obs(s2, s′) = b

as well. Therefore, we can set sensing(s′) to be b , and obs(s1, s′) to be g. We
also set obs(s2, s′) to be g when s2 is also an observer of s′. Next, for each edge
(s′′, s′), if it is abnormal, we set obs(s′′, s) = g. Otherwise, set obs(s′′, s) = b . By
doing so, we remove one bad assignment in the behavior vector of s1 and will
not change any good assignment in the behavior vector of s2 to bad. And the
resulting behavior set is still consistent.

We keep doing the above modification for each node that s1 and s2 observe.
The final behavior set is consistent, and both s1 and s2 are uncompromised.

Note that a specific sensor network application may have further con-
straints on the behavior of a compromised node. For example, a node’s ob-
serving behavior may be tied to its sensing behavior, that is, they have to be
normal or abnormal at the same time. Without such application-specific prop-
erties, we may identify more suspicious pairs, which is outside of the scope of
this paper, as we focus on a general application-independent framework for
identifying compromised nodes.

Next, we discuss how to identify compromised nodes when taking the secu-
rity estimation into consideration.

Clearly, if a sensor node does not appear in the inferred graph, then its be-
havior is consistent with the sensor behavior model and observer model and
thus should be considered uncompromised. Hence, we concentrate on identify-
ing compromised sensor nodes among those involved in the inferred graph.

Definition 3.3. Given an inferred graph I(V, E) and a security estimation
K, a valid assignment with regard to I and K is a pair (Sg, Sb), where Sg and
Sb are two sets of sensor nodes that satisfy all the following conditions:

(1) Sg and Sb is a partition of V, i.e., Sg ∪ Sb = V and Sg ∩ Sb = ∅;

(2) For any two sensor nodes si and sj, if si ∈ Sg and sj ∈ Sg, then {si, sj} 6∈ E;
and

(3) |Sb | ≤ K.

Intuitively, a valid assignment corresponds to one possible way that sensor
nodes are compromised; that is, when they raise false alerts and conduct ab-
normal activities, the resulting inferred graph is I. Sg and Sb contains the un-
compromised and compromised nodes respectively. For a given inferred graph
and a security estimation K, there may exist many valid assignments. Obvi-
ously the common nodes in all possible assignments are always compromised,
and others may or may not be compromised, depending on which assignment
is true for the actual system. This inspires us that an optimal algorithm is to
identify the common nodes in all possible assignments, thus it will identify the
largest number of truly compromised nodes and does not introduce any false
positives.

Definition 3.4. Given an inferred graph I(V, E) and a security estimation
K, let {(Sg1, Sb1), . . . , (Sgn, Sbn)} be the set of all the valid assignments with
regard to I and K. We call

⋂
1≤i≤n Sbi the compromised core of the inferred

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

A Framework for Identifying Compromised Nodes in Wireless Sensor Networks · 12: 17

graph I with security estimation K, denoted CompromisedCore(I, K). Simi-
larly,

⋂
1≤i≤n Sgi is called the uncompromised core of I with security estimation

K, denoted UncompromisedCore(I, K).

Definition 3.5. Let I be the inferred graph, given an observability graph G,
a sensor behavior model, an observer model, a security estimation K, and a set
of alerts during a time period T. We say an identification function is F optimal
if and only if F always returns CompromisedCore(I, K).

If an identification function is optimal, then it identifies the largest num-
ber of compromised nodes without introducing any false positives. In other
words, if a function F′ returns any node s not in the compromised core, then
we can always find a valid assignment such that s is not compromised in the
assignment. This implies that F′ may introduce false positives. Given the gen-
eral framework, one key problem is thus to develop algorithms that efficiently
compute CompromisedCore(I, K).

On the other hand, though introducing no false positives, the compromised
core may not achieve high detection rates because there may exist suspicious
pairs whose nodes are not included in the compromised core. Thus, another
key problem is to seek techniques that further eliminate compromised nodes
without causing many false positives.

In summary, our approach is composed of two phases. In the first phase, we
compute or approximate the compromised core, identifying those nodes that
are definitely compromised. In the second phase, we trade off accuracy for
eliminating more compromised nodes.

3.4 The Algorithm to Identify Compromised Sensor Nodes

Though collusion between compromised nodes is good for an attacker, an iden-
tification function should not rely on any assumptions of collusion models. Oth-
erwise, an attacker may easily defeat the identification algorithm by slightly
changing the behavior of compromised nodes and making the collusion as-
sumption invalid. For example, even if s1 issues a lot of alerts against s2,
we cannot conclude that one of them is compromised and the other is not. It
is possible that both of them are compromised, and the attacker just wants to
confuse the identification function.

On the other hand, no matter how compromised nodes collude, it always
holds that a suspicious pair contains at least one compromised node. This
property helps us derive the lower bound of the number of compromised nodes.

LEMMA 3.6. Given an inferred graph I(V, E), let VI be a minimum vertex

cover of I. Then the number of compromised nodes is no less than |VI|.

PROOF. When we assign the nodes into Sg, Sb , for each edge Eij, at least one
end point of them is in Sb . So Sb is essentially a vertex cover for I. |S| ≥
|VI|.

We denote the size of the minimum vertex covers of an undirected graph G

as CG . Given a sensor node s, the neighbor of s in an inferred graph I is denoted

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

12: 18 · Zhang et al.

Ns. Further, let I′
s denote the graph after removing s and its neighbors from I.

We have the following theorem for identifying compromised sensor nodes.

THEOREM 3.7. Given an inferred graph I and a security estimation K, for

any node s in I, s ∈ CompromisedCore(I, K) if and only if |Ns| + CI′
s
> K.

PROOF. ⇒: Suppose there exists some s that satisfies |Ns| + CI′
s

> K and
s ∈ Sg for some assignment (Sg, Sb). Then we will have Ns ⊆ Sb . Ac-
cording to Lemma 3.6, we know the minimum number of malicious nodes
in I′

s is CI′
s
. So we have |Sb | ≥ |Ns| + CI′

s
> K. This contradicts with con-

straint 3 of Definition 3.3. So s must be in Sb under any assignment. Thus
s ∈ CompromisedCore(G, K).

⇐: If there exists s ∈ CompromisedCore(G, K), that satisfies |Ns| + CI′
s
≤ K.

Then we can always construct an assignment of Sb : Sb = Ns

⋃
VI′

s
. This

assignment will satisfy all constraints of Definition 3.3, but it also intro-
duces a contradiction: s ∈ CompromisedCore(G, K), and s /∈ Sb . So if s ∈
CompromisedCore(G, K), it must satisfy |Ns| + CI′

s
> K.

Intuitively, if we assume a sensor node s is uncompromised, then all its
neighbors in I must be compromised. According to Lemma 3.6, there are at
least |Ns| + CI′

s
compromised nodes, which should be no more than the security

estimation K. Otherwise, s must be compromised. Meanwhile, if |Ns|+CI′
s
≤ K,

we can always construct a valid assignment for I with regard to K, where s is
assigned as uncompromized, which means s is not in CompromisedCore(I, K).

By Theorem 3.7, the algorithm to identify CompromisedCore(I, K) is
straightforward. For each node s, we check whether |Ns| + CI′

s
is larger than K.

Unfortunately, this algorithm is in general not efficient because the minimum
vertex covering problem is NP complete. In theory we also have to compute
the minimum vertex cover of a different graph when checking each node.

Thus, we seek efficient algorithms to approximate the size of minimum ver-
tex covers. To prevent false positives, we are interested in deriving a good
lower bound of the size of minimum vertex covers, a goal different from that of
many existing approximation algorithms. In this paper, we choose the size of
maximum matchings of I as such an approximate. We denote the size of the
maximum matchings of an undirected graph G as MG .

LEMMA 3.8. Given an undirected graph G, MG ≤ CG ≤ 2MG . And the

bounds are tight [Vazirani 2001].

COROLLARY 3.9. Given an inferred graph I and a security estimation K, for

any node s in I, if |Ns| + MI′
s
> K, then s ∈ CompromisedCore(I, K).

A maximum matching of an undirected graph can be computed in polyno-
mial time [Micali and Vazirani 1980]. Algorithm 1 shows an efficient algorithm
to approximate the compromised core. Because this algorithm does not assume
any specific collusion model among compromised nodes, we call it the general
identification algorithm.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

A Framework for Identifying Compromised Nodes in Wireless Sensor Networks · 12: 19

Algorithm 1 AppCompromisedCore(I, K))

//Input: I is an inferred graph
// K is a security estimation
//Output: the compromised core of I with K

Sb = ∅
For each sensor node s in I

Let ns be the number of neighbors of s

Let m = MI′
s

If ns + m > K

Sb = Sb ∪ {s}
Return Sb

THEOREM 3.10. The complexity of the algorithm AppCompromisedCore is

O(mn
√

n), where m is the number of edges and n is the number of vertices in an

inferred graph.

PROOF. As described by Micali and Vazirani [1980], the complexity of find-
ing the maximum matching of I′

s of any node s is O(m
√

n). Algorithm AppCom-
promisedCore will go through each node s in the system, so the total complexity
is O(mn

√
n).

3.5 Further Elimination of Compromised Sensor Nodes

The above algorithm does not introduce any false positives. Compromised
nodes identified by the above algorithms may be safely excluded from the net-
works through, for example, key revocation [Du et al. 2003b; Liu and Ning
2003]. However, there may still be suspicious pairs left that do not include any
nodes in the compromised core. We call the graph composed of such pairs the
residual graph.

We may trade off accuracy for eliminating more compromised nodes. Be-
cause a suspicious pair contains at least one compromised node, identifying
both nodes as compromised will introduce at most one false positive. By com-
puting the maximum matching of a residual graph and treating them as com-
promised, the false-positive rate is bounded by 0.5. Note that this is the best
we can do based on the information provided by the general framework. To
reduce this worst-case false-positive rate, application-specific information or
assumptions are needed.

The complexity of this phase is bounded by O(m
√

n) [Micali and Vazirani
1980], where m and n are the numbers of edges and vertices in an inferred
graph respectively.

In summary, given an inferred graph and a security estimation, our ap-
proach is first to approximate its compromised core. We then compute the
maximum matching of the residual graph and further eliminate compromised
nodes.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

12: 20 · Zhang et al.

3.6 Identification of Colluding Compromised Sensor Nodes

In general, collusion among compromised nodes will enable attackers to have
a stronger influence on the sensor network and make it harder for the base
station to identify them. The general identification algorithm does not as-
sume any knowledge of the collusion among compromised nodes. Therefore,
the worst case would be that the compromised nodes do collude, but the base
station has to be conservative and use the general identification algorithm.

In this section, we consider the situation where the base station is aware
of how compromised nodes will collude. Note that we are not advocating that
this is a realistic situation, as in practice an attacker’s strategy is most likely
unknown. Instead, we intend to investigate how much the base station can
do better with this extra knowledge, which will help us better understand the
identification capability of the general algorithm. In other words, the iden-
tification capability of the base station with the extra knowledge of the at-
tacker’s strategy gives us an upper bound of that of the general identification
algorithm.

For simplicity, in this section, we assume a strong collusion model where
compromised nodes are coordinated with each other when monitoring events
and raising alerts. In other words, compromised nodes do not raise alerts
against each other, and alerts against a node from two compromised nodes
are consistent. It is easy to see that in this case the inferred graph is bipartite,
because an edge can be only between an uncompromised node and a compro-
mised one. We call inferred graphs in this situation collusion-inferred graphs.

Let G1, . . . , Gk be the connected components of a collusion inferred graph
I. For each Gi, 1 ≤ i ≤ k, let A i, Bi denote the two sets of disjoint vertices
in Gi such that vertices in one set are adjacent only to vertices in the other
set. We call (A i, Bi) the two-color partition of Gi. Without loss of generality,
we assume |A i| ≥ |Bi|. Clearly, because I is collusion inferred, vertices in the
same set are either all compromised or all uncompromised. Further, if vertices
in one set are compromised (uncompromised), then vertices in the other set are
uncompromised (compromised). Therefore,

∑
1≤i≤k |Bi| becomes a lower bound

of the number of compromised nodes in a network.

LEMMA 3.11. Let I(V, E) be a collusion-inferred graph and K be a security

estimation. Given the two-color partition (A i, Bi) of any connected component of

I, 1 ≤ i ≤ k, let Qi be either A i or Bi. We have Qi ⊆ UncompromisedCore(I, K)
if and only if |Qi| +

∑
j6=i min(|A j|, |B j|) > K.

PROOF. ⇒ : For simplicity, we define the notation of sets in such a
way that |A j| ≥ |B j| for all j as before. Suppose there exists Qi ⊆
UncompromisedCore(G, K), which satisfies |Qi| +

∑
j6=i |B j| ≤ K. Then from

Definition 3.4, Qi ∈ Sgr for all 1 ≤ r ≤ n, where n is the number of valid
assignments. Suppose the corresponding set in the same coloring partition
with Qi is Pi. Because Pi and Qi are bipartite, we know that Pi ∈ Sbr for all
1 ≤ r ≤ n, thus Pi ⊆ CompromisedCore(G, K). Now we look at a particular
assignment (Sgx, Sb x), 1 ≤ x ≤ n, such that Sb x contains Qi and all B j, 1 ≤ j ≤ k

except Qi, where k is the number of two-color partitions and Sgx contains Pi

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

A Framework for Identifying Compromised Nodes in Wireless Sensor Networks · 12: 21

and all A j, except Qi. This assignment satisfies all constraints of Definition
3.3, but it also introduces contradiction: Qi ⊆ UncompromisedCore(G, K), thus
Qi ⊆ Sgj for all 1 ≤ j ≤ n, but Qi Sgx in this assignment. So if we have
Qi ⊆ UncompromisedCore(G, K), it must satisfy |Qi| +

∑
j6=i |B j| > K.

⇐ : Suppose there exists some Qi that satisfies |Qi| +
∑

j6=i |B j| > K,
and Qi can be in some Sb y, 1 ≤ y ≤ n. Because each coloring partition
will have a set in Sb y, Sb y will be composed of the following sets: Sb y =
{Qi, Ar, · · · , As, Bt, · · · , Bm}. We thus have |Sb y| > |Qi|+

∑
j6=i |B j| > K, because

|A i| ≥ |Bi| for 1 ≤ i ≤ k. This contradicts constraint 3 in Definition 3.3. So Qi

must be in Sgy for all 1 ≤ y ≤ n. Thus Qi ⊆ UncompromisedCore(G, K).

Intuitively, if Qi is compromised, then |Qi| +
∑

j6=i |Bi| gives a lower bound of
the number of compromised nodes, which should be no more than K.

COROLLARY 3.12. Given any connected component Gi of a collusion-

inferred graph I and a security estimation K, Bi 6⊆ UncompromisedCore(I, K).

PROOF. Suppose there exists some Bi ⊆ UncompromisedCore(I, K), then we
know Bi ∈ Sgi for all assignment 1 ≤ i ≤ n. Thus A i ∈ Sbi for all assignment
1 ≤ i ≤ n, so we have A i ⊆ CompromisedCore(I, K). Now from Lemma 3.11,
we have |Bi| +

∑
j6=i |B j| > K. Because |A i| ≥ |Bi|, we also have A i +

∑
j6=i |B j| >

K. Again from Lemma 3.11, A i must be in UncompromisedCore(I, K). This
introduces contradiction. So Bi 6⊆ UncompromisedCore(I, K).

THEOREM 3.13. Given a collusion-inferred graph I with k connected com-

ponents and a security estimation K, let (A i, Bi), 1 ≤ i ≤ k, be the two-color

partition of each connected component. Let Sb = {Bi | |A i| +
∑

j6=i |B j| > K}, and

Sa = {A i | |A i| +
∑

j6=i |B j| > K}. Then CompromisedCore(I, K) =
⋃

Bi∈Sb
Bi, and

UncompromisedCore(I, K) =
⋃

Ai∈Sa
A i.

PROOF. This is the direct observation based on Lemma 3.11 and Corollary
3.12.

Given Theorem 3.13, it is straightforward to develop the algorithm that
efficiently computes CompromisedCore(I, K). The pseudocode is shown as
Algorithm 2.

Algorithm 2 CollusionCompromisedCore(I, K)

//Input: I is a collusion inferred graph
// K is a security estimation
//Output: the compromised core of I with K

Sb = ∅
For each connected component Gi of I

Let (ai, b i) be the two-color partition of Gi

If |ai| +
∑

j6=i |b j| > K

Sb = Sb ∪ b i

Return Sb

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

12: 22 · Zhang et al.

THEOREM 3.14. The complexity of algorithm CollusionCompromisedCore is

O(n + m), where n and m are the numbers of vertices and edges respectively in

an collusion-inferred graph.

PROOF. The complexity of finding all the two-color partitions from the
collusion-inferred graph is O(m), because we need to go through each edge to
construct the partitions. The complexity of identifying the compromised core
is O(n), because the number of the connected components is in the order of
O(n), and we need to go through each component. Thus the total complexity of
algorithm CollusionCompromisedCore is O(n + m).

After we have identified the compromised core for the bipartite graph, we
achieve the goal of identifying the largest number of compromised nodes with-
out introducing any false positives. For the residual graph, we can use the
same maximum matching algorithm as we proposed in Section 3.5 to trade off
false positives for detection rates.

4. EXPERIMENTS

In this section, we design a set of experiments to evaluate the effectiveness of
our algorithms.

4.1 Experiment Methodology

We simulate a sensor network deployed to monitor the temperature of an area
of 100m × 100m. For simplicity, we assume sensor nodes are randomly dis-
tributed in the area. We adopt a simple detection mechanism. If the distance
between two sensor nodes is within 10 meters, and the temperatures reported
by them differ by more than 1◦C, the base station infers that each of them
raises an alert against the other. In other words, two nodes are observers of
each other if they are with in 10 meters. We assume that, once a network is
deployed, sensors’ location information can be collected through localization
techniques. Therefore, the base station is able to construct an observability
graph accordingly.

Sensor nodes report temperatures to the base station once per minute, and
the sensed data follows a normal distribution N(µ, σ 2), where µ is the true
temperature at a location and σ = 0.2, which is consistent with the accuracy
of typical thermistors in sensor network [Crossbow Technology Inc. 2003]. The
overall operation time is 24 hours, but the base station will review the system
every hour. So within each time window of one hour, there will be 60 data
reports from each sensor node. In the simulation, we do not consider such
effects as the message loss, as it has already been modelled by the parameters
as rb , rm, and rn.

Unless otherwise stated, we assume 10% ∼ 15% of the nodes in the net-
work are compromised. The security estimation is K = 15%N, where N is
the total number of nodes in the network. The goal of the attacker is to raise
the temperature reading in the area. The attacker may choose to either ran-
domly compromise nodes in the field, in which case no local majority is formed,
or compromise nodes centered around a position (x, y), following a normal

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

A Framework for Identifying Compromised Nodes in Wireless Sensor Networks · 12: 23

distribution with a standard deviation σd. The latter corresponds to the case
of local majority, and the parameter σd controls its strength. The smaller σd

is, the closer compromised nodes are to each other, and thus the stronger the
local majority is. We call σd the concentration of compromised nodes.

The evaluation metrics of the experiments are the detection rates and false-
positive rates of the proposed identification approach. In this section we show
the detection rates and false-positive rates separately in different figures. We
do not plot the receiver operating characteristic curve (ROC) of our algorithm
because, given an observability graph and a set of alerts, there is no other
parameters in our approach to adjust the identification results.

The effectiveness of our algorithm will be affected by the actual deployment
of the sensor nodes, especially the observability graph. Thus, for each sim-
ulation, we generate ten random deployments of sensor networks, following
the parameters specified for each one’s setup. The detection rates and false-
positive rates are averaged over the results on these ten random networks. We
have identified through simulations that the 95% confidence interval of the
detection rate and false-positive rates are within 1% across the ten random
networks, so we believe ten should be enough.

We first act conservatively and assume that compromised nodes in fact fol-
low the strong collusion model, but the base station does not know this and
cannot use any knowledge of the collusion. Compromised nodes all report the
same false temperature, so that there are no alerts between them. We evaluate
the effectiveness of the general AppCompromisedCore algorithm followed by
the maximum matching approach. We call it general+mm in the experiment.
As a comparison, we will also see how well we can do if we know the fact that
the attackers are colluding and evaluate the CollusionCompromisedCore algo-
rithm followed by the maximum matching approach. We call it bipartite+mm

in the experiment.
We further compare our approach with the simple voting mechanism.

Among a node s’s neighbors, if those that raise alerts against s are more than
those that do not, then s is considered as compromised.

We also compare our approach with EigenTrust [Kamvar et al. 2003] and
PeerTrust [Xiong and Liu 2002], two well-known reputation-based trust func-
tions for P2P systems. Though there are many trust functions proposed for
P2P networks and semantic webs, many of them are decentralized and subjec-
tive, in the sense that an entity’s trust value varies depending on who is the
trust evaluator [Golbeck and Hendler 2004; Lee et al. 2003; Richardson et al.
2003; Yu and Singh 2002]. They are not suitable for centralized identification
of compromised nodes in sensor networks. EigenTrust and PeerTrust both de-
rive a unique global trust value for each entity from that entity’s transaction
records. Applied in sensor networks, the global trust values can be used to
rank sensor nodes, where those with low trust values are identified as compro-
mised. Therefore, they can be compared with general+mm and bipartite+mm.

The idea of EigenTrust is similar to the PageRank algorithm [Lawrence
et al. 1998]. In EigenTrust, the number of satisfactory and unsatisfactory
transactions between each pair of entities is collected to construct a matrix.
One special property of the matrix is that the entries in each row add up to 1.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

12: 24 · Zhang et al.

The matrix is repetitively multiplied with an initial vector until it converges.
The initial vector is a predefined parameter that corresponds to the default
trust value of each entity. Each entry in the converged vector represents an
entity’s final trust value. Because the trust values of all nodes always add up
to 1, 1/N is the average trust value of sensor nodes in the network. In the
experiment, we identify the K nodes with the lowest trust values as compro-
mised, unless their trust values are over 1/N.

In PeerTrust, an entity’s trust value is the normalized number of satisfac-
tory services over the total number of transactions in which the entity takes
part. It is further weighted by the trust values of the transaction feedback is-
suers and the quantity of each transaction. Similar to EigenTrust, the global
trust values for all entities are also obtained through iterative matrix multipli-
cation until they converge. In general, PeerTrust can be viewed as a majority
voting scheme weighted by voters’ trust values.

Traditional fault diagnosis PMC models are not applicable to sensor net-
works, as we have analyzed in Section 1, and we do not compare them.

We conduct four sets of experiments to evaluate the impacts of the following
factors on the effectiveness of the above approaches.

4.2 Local Majority

Figure 5 shows the effectiveness of different approaches when compromised
nodes form local majorities. The number of nodes in the network is set to be
200. The concentration of compromised nodes is varied from 5 to 100. When
compromised nodes are extremely close to each other, they essentially form a
cluster. Suspicious pairs involve only those compromised nodes near the edge
of the cluster. Those near the center of the cluster do not appear in the inferred
graph and thus cannot be identified. We note that, even in this situation, the
general+mm approach can still achieve detection rate over 0.6, mainly due to
the maximum matching approach in the second phase. When the compromised
nodes are less concentrated, the general identification algorithm enables the
base station to quickly identify almost all the compromised nodes. That is why
we see a quick rise in general+mm’s detection rate and a sharp drop in its
false-positive rate.

When compared with other schemes, we have the following observations.
First, EigenTrust seems to be inferior to general+mm, bipartite+mm, and
PeerTrust. The reason is that EigenTrust relies on the existence of pretrusted
peers to identify malicious collectives, which correspond to colluding compro-
mised nodes in our setting. Without pretrusted peers, it cannot significantly
distinguish malicious entities from good ones. That is why we see an upper
bound of the detection rate of EigenTrust even when compromised nodes do
not form a strong local majority.

Second, we notice that when the concentration is over 20, PeerTrust and vot-
ing mechanism actually yield comparable detection rate to that of general+mm
with a little bit lower false-positive rates. A closer examination of the network
reveals that, with 200 nodes in the network, the average number of observers
for each node is around 3. When the concentration is 20 among the neighbors

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

A Framework for Identifying Compromised Nodes in Wireless Sensor Networks · 12: 25

Fig. 5. The impact of the concentration of compromised sensor nodes.

of a compromised node, on the average no more than one neighbor is compro-
mised. In other words, when the concentration is over 20, compromised nodes
seldom form local majorities. In this case, PeerTrust and simple voting, both
relying on majority voting mechanisms, are more likely to assign low trust
values to compromised nodes or label them as compromised nodes directly. For
general+mm, each identified compromised node in the second phase will result
in the sacrifice of an uncompromised nodes resulting in higher false-positive
rates.

Third, when the compromised nodes form strong local majorities (i.e., the
concentration is smaller than 20), general+mm yields much higher detection
rates and lower false-positive rates than PeerTrust. And the simple voting has
the poorest detection rate, as low as 10%, as it does not do any reasoning on the
credibility of the feedback. This is an important advantage of our approach. In
sensor networks, it is always cost-effective for attackers to compromise a small

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

12: 26 · Zhang et al.

portion of the network and make them collude. Otherwise, either they have to
compromise a large portion of the network, which is very costly and often not
feasible, or they do not collude, in which case any voting-based algorithm can
identify most of the compromised nodes, as shown above. So it is important
that an identification algorithm performs well even when local majorities are
formed by compromised nodes. From the experiment, we see when collusion
is the strongest; although the false-positive rate of our algorithm is close to
50%, it is still the lowest among all solutions and also achieves the highest
detection rate.

Last, bipartite+mm always has the highest detection rate and lowest false-
positive rate. This shows that, when we have the exact information of the at-
tacker’s behavior, the dedicated identification algorithm can be very effective.

4.3 Sensor Node Density

In the next experiment, we vary the number of sensor nodes in the area from
50 to 200. As we have seen from previous experiment, when there is no collu-
sion among compromised nodes, all algorithms have high detection and false-
positive rates, and our algorithm outperforms the other three algorithms when
there exists a strong collusion. Thus we report the experimental results, which
set the concentration of compromised nodes to be 15, not too strong a case. We
have also tried other concentration parameters and observed similar trends.
Figures 6a and 6b show, respectively, the detection rate and the false-positive
rate of each approach.

We see that when the number of sensor nodes increases, all the approaches
achieve better detection rates and lower false-positive rates. Intuitively, the
more densely sensor nodes are deployed, the more observers each node has,
and thus the more likely an abnormal activity is to be detected. The second
observation is that general+mm and bipartite+mm do not achieve high detec-
tion rates when sensor nodes are deployed very loosely. This is because in this
situation many nodes do not have any observers. There are too few alerts for
the base station to identify compromised nodes definitely. A further study tell
us that on average, when there are 100 nodes in this area, 16.6 nodes have
only one observer. When there are 150 nodes in the area, 10 of them have only
one observer. When we deploy 200 nodes in the area randomly, only 5.2 nodes
on average will have one observer.

The third observation, is that we see that general+mm detects much more
compromised nodes with similar false-positives than all other approaches, be-
cause it takes the unique properties of sensor networks into consideration so
that it is more resilient to compromised nodes forming local majorities. Finally,
the bipartite+mm algorithm is still the best, as it has additional information
about attacker’s behavior.

4.4 Accuracy of The Security Estimation

The security estimation gives an upper bound of the number of compromised
nodes. It is an important parameter for identification functions to infer com-
promised nodes. An accurate security estimation is not expected to always be

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

A Framework for Identifying Compromised Nodes in Wireless Sensor Networks · 12: 27

Fig. 6. The impact of the deployment density of sensor nodes.

available. The next experiment evaluates how the accuracy of a security esti-
mation affects the effectiveness of different approaches. The total number of
sensor nodes is set to be 200. The number of compromised nodes is 20, and
their concentration is set to be 15. The security estimation is varied from 20
to 40. The voting mechanism is not evaluated in this experiment as it does not
involve this parameter when identifying compromised nodes. The experiment
results are shown in Figure 7.

We see that general+mm still achieves very high detection rates, even when
the accuracy of the security estimation decreases. When the security estima-
tion is accurate, most of the compromised nodes are identified by the algo-
rithm in the first phase, producing few false-positives. When the accuracy of
the security estimation decreases, the effectiveness of the first phase also de-
creases. More compromised nodes are instead identified in the second phase
by the maximum matching approach. That explains why the false-positives

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

12: 28 · Zhang et al.

Fig. 7. The impact of the accuracy of security estimation.

increase while detection rates remain high. The detection rates of EigenTrust
and PeerTrust in fact improve a little bit when the security estimation accu-
racy decreases. This is because they always identify the K nodes with the low-
est trust values as compromised, which will include more compromised nodes
as K increases. But this also increases their false-positive rates. For bipar-
tite+mm, even when K is set as twice the real number of compromised nodes,
the false-positive rate is still not high. This is because, when we reason on
the set of alerts and build the inferred graph, we take into consideration not
only the nodes that are directly involved in the alerts but also some other nodes
that are not involved in any alerts but can observe those involved nodes. When
having more nodes, chances are there will be more nodes in each partition of
the bipartite graph; thus, the judgment condition |ai| +

∑
j6=i |b j| > K in algo-

rithm CollusionCompromisedCore is more easily satisfied than the condition
ns + m > K in algorithm AppCompromisedCore.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

A Framework for Identifying Compromised Nodes in Wireless Sensor Networks · 12: 29

In summary, our experiments show that the proposed two-phase approach
in most cases achieves high detection rates with low false-positives, even when
sensor nodes are relatively loosely deployed, and compromised nodes form
strong local majorities. Also, because they are designed to accommodate the
uniqueness of sensor networks, they consistently outperform EigenTrust and
PeerTrust, two well-known reputation-based trust management schemes for
general decentralized systems, as well as the simple voting mechanism. This
is especially true when compromised nodes form strong local majorities.

Our experiments also indicates how alerts can be implicitly inferred from
application data for some specific applications, as in our example, thus do not
introduce any additional communication or computation cost at the network.

In the next experiment, we evaluate the impact on the effectiveness of our
algorithms when the security estimation is in fact less than the actual number
of compromised nodes in a network. As in the previous experiment, we set the
number of compromised nodes to be 20 and vary the security estimation K from
1 to 19. We observe that our algorithm always throws an exception, stating
that the size of the minimum vertex cover of the inferred graph is greater than
K. This exception indicates that we underestimate the number of compromised
nodes when setting K because it contradicts Lemma 3.6. We realize that such
underestimation may not always be detected. It is possible that with certain
observability graphs, an attacker might be able to compromise more than K

sensor nodes and submit false data and alerts in a way such that the size of
the minimum vertex cover of the resulting inferred graph is no more than K.
We will study the properties of such graphs in future work. Currently, we treat
the exceptions as chances to use multiple K for the detection. That is, if there
is an exception, then we should go back and double-check our estimation about
K, then recompute another bigger K and run our algorithm again.

4.5 Network Evolution

After some compromised nodes are identified and removed, there will be fewer
nodes remaining in the system, which will inevitably affect the effectiveness
of our scheme. In this section, we conduct experiments to evaluate the degra-
dation of proposed scheme when an attacker continues to compromise more
sensor nodes. Specifically, we set the number of sensor nodes in the area to be
200 initially. In each time window, the attacker compromises 15 more nodes.
These nodes are chosen from a random new center (x, y) within the area, with
concentration of 15. We set the security estimation K = 20 to reflect our knowl-
edge that no more than 20 nodes will be compromised within each time window.
When the total number of identified compromised nodes is bigger than K, an
exception will be thrown to indicate that we need to reevaluate our security
estimation. We run both general+mm and bipartite+mm. Figure 8 shows the
detection rate and false-positive rate at the end of each time window when the
base station uses the two algorithms to identify compromised nodes.

We see that, as time goes on, the detection rate of both general+mm and
bipartite+mm decrease, and the false positive rates increase. This is expected
as the density of the network gets smaller when more and more nodes are

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

12: 30 · Zhang et al.

Fig. 8. The effectiveness of the proposed scheme when an attacker continues to compromise sen-
sor nodes.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

A Framework for Identifying Compromised Nodes in Wireless Sensor Networks · 12: 31

excluded from the system. To illustrate this, the number of nodes remaining
in the network after we exclude those identified as compromised is shown in
Figure 8c. As we have shown in Section 4.3, when the density of a network
decreases, a node will have fewer observers, which makes it harder to definitely
identify a compromised node.

The result of the experiment suggests the importance of network reconfigu-
ration. Once some compromised nodes are removed, it is necessary to deploy
new sensor nodes into the network so that each node is observed by a suffi-
cient number of other nodes. Otherwise, an attacker can selectively compro-
mise those nodes that are insufficiently observed, and avoid being identified.
We briefly discuss network reconfiguration in Section 5.

5. DISCUSSION

5.1 Attacker’s Strategy

The identification algorithm is not secret. Thus it is important to investigate
that, with the knowledge of the identification algorithm, what an attacker
should do to compromise nodes and maximize its influence in the sensor net-
work. The measure of the influence of compromised nodes often depends on
the functionality of specific applications. In this article, we adopt a simple de-
finition based on the following observation. After some nodes are identified as
compromised, they will be removed from the network. The data collected by
them will not be used in a sensor network application. Thus, after the iden-
tification algorithm is used, the bigger the portion of sensor nodes that are
controlled by an attacker, the larger influence the attacker has.

Specifically, a compromised node may have the following malicious activi-
ties: sending false data, sending false alerts against an uncompromised node,
and not sending alerts when it should according to a sensor network’s detection
mechanism. A compromised node may take multiple malicious actions during
a period of time. The goal of the attacker is to maximize false information in-
troduced into the systems. In other words, the more nodes sending false data
that are not detected, the larger the influence the attacker has in the sensor
network.

If a compromised node s1 sends false data and one of its observers s2 is
not compromised, then s2 will issue alerts against s1 to the base station, and
{s1, s2} forms a suspicious pair in the inferred graph. Due to the maximum
matching in the second phase of the identification algorithm, s1 and s2 may
both be identified as compromised. Thus, to be sure that s1 is definitely not
identified as compromised by our identification algorithm, the attacker also
needs to compromise all the observers of s1. In some sense, the compromised
observers of s1 serve as the protectors of s1 so that its false data can be accepted
by the base station. The protectors may still send legitimate data to the base
station. They just do not issue alerts against s1. By doing so, neither s1 nor its
observers will be included in any suspicious pairs. Therefore, s1 will definitely
be treated as uncompromised by the identification algorithm.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

12: 32 · Zhang et al.

Generally, we have the following definition.

Definition 5.1. Let G be an observability graph and S be a set of vertices in
G. We say S′ ⊆ S is a protected set of S if, for any s ∈ S′, all the observers of s

belong to S. The protection capability of S is the size of the maximum protected
set of S.

Intuitively, the protection capability of S corresponds to the maximum
amount of false data that an attacker can definitely inject to the base station
once S is compromised.

Given an observability graph G, the attacker may face the following two
types of problems. First, suppose the attacker has the resources to compromise
only n nodes. Then how can one determine a set of n nodes in G so that they
have the maximum protection capability? Second, suppose the attacker would
like to inject false data from at least t nodes without being detected; then what
is the minimum number of sensor nodes it has to compromise?

THEOREM 5.2. The problem to maximize an attacker’s protection capability

after compromising n nodes is NP complete.

PROOF. First let us look at the graph-cutting problem [Marx 2004]: Given a
graph G(V, E) and two integers k and l, is there a partition V = X ∪ S∪ Y such
that |X | = l, |S| ≤ k and there is no edge between X and Y? This problem is
equivalent to the graph-cutting problem where l = |V| − n. It has been shown
by Marx that graph-cutting problem is NP complete by reducing the minimum
vertex covering problem to this problem [Marx 2004].

THEOREM 5.3. The problem to minimize the number of compromised nodes

to achieve protection capability t is NP complete.

PROOF. Similar to the proof above, this problem is equivalent to the graph-
cutting problem where l = t.

The above results are bad news for attackers, fortunately. With limited re-
sources, it is very hard for attackers to inject maximum false information. Also,
to inject a certain amount of false information, the attacker may have to end up
compromising more nodes than necessary, which requires more effort. On the
other hand, it is not clear yet whether there exists a good approximation algo-
rithm to the above problems. This is one of the topics that we will investigate
in our future work.

5.2 Attacks

The proposed framework and algorithms focus on identifying compromised
nodes through reasoning about alerts between sensor nodes. One possible at-
tack is that an attacker may repetitively trigger events that can only be mon-
itored by a node s. Thus, the data reported by s may be significantly different
from that of others. This may cause many alerts against s, and have s identi-
fied as compromised. The essential reason for such attack is that the detection
mechanism cannot tell the difference in the information of a real phenomenon
from pure bogus information generated by a compromised node. This problem

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

A Framework for Identifying Compromised Nodes in Wireless Sensor Networks · 12: 33

cannot be handled by the general framework. Instead, it requires more accu-
rate application detection mechanisms, for example, having sensor nodes more
densely deployed so that any event can be monitored by multiple nodes.

5.3 Network Reconfiguration

Once compromised nodes are identified, this calls for mechanisms to effectively
mitigate their impacts. One straightforward method is to remove those sensor
nodes from the network through, for example, key revocation. In some situa-
tions however, this may not be enough. Sensors may provide several services in
a single application, such as routing, data sensing, and data aggregation. Re-
moving sensors from a network also removes services from them, which may
have a significant impact on the functionality of an application. Moreover, as
shown by the experiment in Section 4.5, when there are fewer nodes in the
area, it is also more vulnerable to attacks. Therefore, it is often necessary to
reconfigure the service-providing relation between existing sensors or to de-
ploy new sensors. Sensor network reconfiguration has several goals, including
preserving the functionality of a sensor network, minimizing reconfiguration
costs, and improving the overall trustworthiness of a sensor network. A suit-
able reconfiguration cost model for sensor networks is essential to achieve the
above goals.

5.4 Decentralized Approaches

In this article, we adopt a centralized approach, that is, the base station
collects alerts and identifies potentially compromised nodes. A centralized
approach usually offers better accuracy in identifying compromised and mal-
functioned nodes, because it has a global view of the network. A decentralized
approach (as described by Ganeriwal and Srivastava [2004]) is a possible al-
ternative, which limits alerts to be exchanged between nearby nodes. A decen-
tralized approach may incur lower communication costs. But without global
information, it is in general more difficult to deal with the local majority and
collusion of compromised nodes. How to design a lightweight decentralized
approach to accurately identify compromised nodes instead of just tolerating
them is a challenging problem.

6. RELATED WORK

Much work has been done to provide security primitives for wireless sensor
networks, including practical key management [Chan et al. 2003; Du et al.
2003b; Eschenauer and Gligor 2002; Liu and Ning 2003], broadcast authen-
tication [Liu et al. 2003; Perrig et al. 2000, 2001], and data authentication
[Hu and Evans 2003; Przydatek et al. 2003; Zhu et al. 2004] as well as secure
in-network processing [Deng et al. 2003]. The work of this article is comple-
mentary to the above techniques and can be combined to achieve high infor-
mation assurance for sensor network applications. Several approaches have
been proposed to detect and tolerate false information from compromised sen-
sor nodes [Du et al. 2003a; Hu and Evans 2003; Przydatek et al. 2003] through,

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

12: 34 · Zhang et al.

for example, sampling and redundancy. But they do not provide mechanisms to
accurately identify compromised sensor nodes, which is the focus of this article.

Reputation-based trust management has been studied in different appli-
cation contexts, including P2P systems, wireless ad hoc networks, social net-
works, and the Semantic Web [Aberer and Despotovic 2001; Kamvar et al.
2003; Lee et al. 2003; Mui et al. 2002; Richardson et al. 2003]. Many trust in-
ference schemes have been proposed. They differ greatly in inference method-
ologies, complexity, and accuracy. As discussed earlier, the interaction model
and assumptions in the above applications are different from sensor networks.
Directly applying existing trust inference schemes may not yield satisfactory
results in sensor networks.

Ganeriwal and Srivastava [2004] propose to detect abnormal routers in sen-
sor networks through reputation mechanism. It is assumed that a sensor’s
routing quality can be observed by nearby sensors through a watchdog mech-
anism. Ganeriwal and Srivastava adopt a decentralized trust inference ap-
proach. Sensors evaluate each other’s trustworthiness by acquiring feedback
information from nearby sensors. Ganeriwal and Srivastava’s work shows the
usefulness of reputation in sensor networks, but their approach treats a sen-
sor network the same as a typical P2P system and thus does not capture the
unique properties of sensor networks. Further, their work focuses on avoiding
services from potentially compromised sensors instead of identifying and ex-
cluding them from sensor networks. Finally, their work is application specific
and cannot be easily applied to other sensor network applications.

The problem of detecting faulty nodes in multiprocessor systems has been
studied for a long time. The pioneering work is the PMC model proposed by
Preparata and colleagues [1967]. Efficient diagnosing algorithms to identify
faulty nodes have also been proposed [Araki and Shibata 2003; Dahbura and
Masson 1984; Fuhrman 1996; Sullivan 1988]. However, all these algorithms
assume that the test assignments follow some special topologies to ensure the
system is t-diagnosable in the first place, which means all faulty nodes in the
system can be identified as long as there are at most t faulty nodes within it.
These algorithms cannot be applied to sensor networks due to their topology
requirements, as deployments in sensor networks are often ad hoc.

Some variants of the PMC relaxed from permanent faults to intermittent
faults [Dahbura et al. 1987; Kozlowski and Krawczyk 1991], but they need cer-
tain assumptions, that is, the faulty nodes will be faulty following certain prob-
abilities [Dahbura et al. 1987], or the number of incorrect outcomes is bounded
[Kozlowski and Krawczyk 1991]. In the most general cases, it is shown by
Dahbura and Masson that the problem is NP complete [Dahbura and Masson
1983a; 1983b].

Previous work on Byzantine fault detection generally focuses on the de-
signing of communication protocols or message/detector structures, so that a
proper voting mechanism can lead to the exposure of Byzantine generals [Ho
et al. 2004; Lamport et al. 1982]. Sensor nodes are often randomly deployed;
thus, solutions in this area are not applicable in sensor networks either.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

A Framework for Identifying Compromised Nodes in Wireless Sensor Networks · 12: 35

7. CONCLUSION

Wireless sensor networks are often deployed unattended in open environ-
ments. Sensors are subject to capture by attackers and thus more likely to be
compromised. Once keying materials are recovered, an attacker may be able to
impersonate compromised nodes completely and inject false information into
sensor network to influence the outcome of an application.

In this article, we present a general framework that abstracts the essen-
tial properties of sensor networks for the identification of compromised sen-
sor nodes. The framework is application independent and thus can model a
large range of sensor network applications. Built on the alert-based detection
mechanisms provided by applications, our framework does not introduce ad-
ditional communication and computation costs to the network. Based on the
framework, we develop efficient algorithms that achieve maximum accuracy
without introducing false-positives. We further propose techniques to trade off
accuracy for increasing the identification of compromised nodes. The effective-
ness of these techniques is shown through theoretical analysis and detailed
experiments. To the best of our knowledge, our work is the first in the field to
provide an application-independent approach to identify compromised nodes
in sensor networks. Our algorithm maintains good performances even if we do
not have a good estimation of the secrecy of the system.

We plan to extend this work in the following directions. First, we are inter-
ested in designing a cost model for sensor network reconfiguration to mitigate
the effect of compromised nodes. The model should include possible reconfigu-
ration mechanisms and consider the multiple functionalities provided by a sen-
sor network and their dependency. Second, we plan to investigate lightweight
decentralized approaches and systematically analyze its benefits and inherent
weakness when compared with centralized approaches. Third, we also plan to
explore the Bayesian model reasoning and assign a probability for each edge
to infer its likelihood to be abnormal, rather than the current binary model.

REFERENCES

ABERER, K. AND DESPOTOVIC, Z. 2001. Managing trust in a peer-2-peer information system.
In Proceedings of the 9th International Conference on Information and Knowledge Management

(CIKM).

ARAKI, T. AND SHIBATA, Y. 2003. (t, k)-diagnosable system: A generalization of the pmc models.
IEEE Trans. Comput. 52, 7.

BOSE, P., MORIN, P., STOJMENOVIC, I., AND URRUTIA, J. 2001. Routing with guaranteed delivery
in ad hoc wireless networks. ACM Wirel. Netw. 7, 6, 609–616.

CAMTEPE, S. AND YENER, B. 2004. Combinatorial design of key distribution mechanisms for
wireless sensor networks. In 9th European Symposium On Research in Computer Security

(ESORICS’04).

CHAN, H., PERRIG, A., AND SONG, D. 2003. Random key predistribution schemes for sensor net-
works. In Proceedings of the IEEE Symposium on Security and Privacy(SP’03).

CROSSBOW TECHNOLOGY INC. 2003. MTS/MDA Sensor and Data Acquisition Boards User

Manual.

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

12: 36 · Zhang et al.

DAHBURA, A. AND MASSON, G. 1983a. Greedy diagnosis of an intermittent-fault/transient-upset
tolerant system design. IEEE Trans. Comput. C-32, 10, 953–957.

DAHBURA, A. AND MASSON, G. 1983b. Greedy diagnosis of hybrid fault situations. IEEE Trans.

Comput. C-32, 8, 777–782.

DAHBURA, A. AND MASSON, G. 1984. An o(n2.5) fault identification algorithm for diagnosable
systems. IEEE Trans. Comput. C-33, 6, 486–492.

DAHBURA, A., SABNANI, K., AND KING, L. 1987. The comparison approach to multiprocessor
fault diagnosis. IEEE Trans. Comput. C-36, 3, 373–378.

DENG, J., HAN, R., AND MISHRA, S. 2003. Security support for in-network processing in wire-
less sensor networks. In Proceedings of the ACM Workshop on Security in Ad Hoc and Sensor

Networks (SASN ’03).

DENG, J., HAN, R., AND MISHRA, S. 2004. A robust and light-weight routing mechanism for
wireless sensor networks. In Proceedings of the Workshop on Dependability Issues in Wireless

Ad Hoc Networks and Sensor Networks (DIWANS).

DU, W., DENG, J., HAN, Y. S., AND VARSHNEY, P. K. 2003a. A witness-based approach for data
fusion assurance in wireless sensor networks. In Proceedings of the IEEE Global Communica-

tions Conference (GLOBECOM).

DU, W., DENG, J., HAN, Y. S., AND VARSHNEY, P. K. 2003b. A pairwise key pre-distribution
scheme for wireless sensor networks. In Proceedings of the 10th ACM Conference on Computer

and Communications Security (CCS’03).

DU, W., FANG, L., AND NING, P. 2005. Lad: Localization anomaly detection for wireless sensor
networks. In Proceedings of the 19th IEEE International Parallel and Distributed Processing

Symposium (IPDPS’05).

ESCHENAUER, L. AND GLIGOR, V. D. 2002. A key-management scheme for distributed sensor
networks. In Proceedings of the 9th ACM Conference on Computer and Communications Security

(CCS ’02).

FUHRMAN, C. P. 1996. Comparison-based diagnosis in faulttolerant, multiprocessor systems.
Ph.D. thesis, Department of Computer Science, Swiss Federal Institute of Technology in
Lausanne (EPFL).

GANERIWAL, S. AND SRIVASTAVA, M. B. 2004. Reputation-based framework for high integrity
sensor networks. In Proceedings of the ACM Security for Ad-Hoc and Sensor Networks

(SASN’04).

GOLBECK, J. AND HENDLER, J. 2004. Accuracy of metrics for inferring trust and reputation in se-
mantic Web-based social networks. In Proceedings of the International Conference on Knowledge

Engineering and Knowledge Management (EKAW). Northamptonshire, U.K.

HO, T., LEONG, B., KOETTER, R., MEDARD, M., EFFROS, M., AND KARGER, D. 2004. Byzantine
modification detection in multicast networks using randomized network coding. In Proceedings

of the IEEE International Symposium on Information Theory (ISIT).

HU, L. AND EVANS, D. 2003. Secure aggregation for wireless networks. In Proceedings of the

Workshop on Security and Assurance in Ad Hoc Networks.

KAMVAR, S., SCHLOSSER, M., AND GARCIA-MOLINA, H. 2003. EigenRep: Reputation manage-
ment in P2P networks. In Proceedings of the 12th International World Wide Web Conference.

KOZLOWSKI, W. AND KRAWCZYK, H. 1991. A comparison-based approach to multicomputer sys-
tem diagnosis in hybrid fault situations. IEEE Trans. Comput. C-40, 11, 1283–1287.

LAMPORT, L., SHOSTAK, R., AND PEASE, M. 1982. The Byzantine generals problem. ACM Trans.

Program. Lang. Syst. 4, 3.

LAWRENCE, R., SERGEY, B., RAJEEV, M., AND TERRY, W. 1998. The PageRank citation ranking:
Bringing order to the Web. Tech. rep., Department of Computer Science, Stanford University.

LEE, S., SHERWOOD, R., AND BHATTACHARJEE, B. 2003. Cooperative peer groups in NICE. In
Proceedings of the Annual Joint Conference of the IEEE Computer and Communication Societies

(INFOCOM).

LIU, D. AND NING, P. 2003. Establishing pairwise keys in distributed sensor networks. In Pro-

ceedings of the 10th ACM Conference on Computer and Communications Security (CCS’03).

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

A Framework for Identifying Compromised Nodes in Wireless Sensor Networks · 12: 37

LIU, D., NING, P., AND DU, W. 2003. Efficient distribution of key chain commitments for broadcast
authentication in distributed sensor networks. In Proceedings of the 10th Annual Network and

Distributed System Security Symposium (NDSS’03).

LIU, D., NING, P., AND DU, W. 2005. Detecting malicious beacon nodes for secure location discov-
ery in wireless sensor networks. In Proceedings of the 25th International Conference on Distrib-

uted Computing Systems (ICDCS’05).

LIU, D., NING, P., AND LI, R. 2005. Establishing pairwise keys in distributed sensor networks.
ACM Trans. Inform. Syst. Secur. 8, 1.

MARX, D. 2004. Parameteried complexity of constraint satisfaction problems. In Proceedings of

the 19th Annual IEEE Conference on Computational Complexity.

MICALI, S. AND VAZIRANI, V. 1980. An o
√

|V||e| algorithm for finding maximum matchings in
general graphs. In Proceedings of the 21st Symp. Foundations of Computing.

MUI, L., MOHTASHEMI, M., AND HALBERSTADT, A. 2002. A computational model of trust and
reputation. In Proceedings of the 35th Hawaii International Conference on System Science.

PERRIG, A., CANETTI, R., SONG, D., AND TYGAR, D. 2000. Effient authentication and signing of
multicast streams over lossy channels. In Proceedings of the IEEE Symposium on Security and

Privacy.

PERRIG, A., SZEWCZYK, R., WEN, V., CULLER, D., AND TYGAR, J. D. 2001. SPINS: Security
protocols for sensor networks. In Proceedings of the 7th Annual ACM International Conference

on Mobile Computing and Networks (MobiCom’01).

PREPARATA, F. P., METZE, G., AND CHIEN, R. T. 1967. On the connection assignment problem of
diagosable systems. IEEE Trans. Electron. Comput. 16, 6, 848–854.

PRZYDATEK, B., SONG, D., AND PERRIG, A. 2003. SIA: Secure information aggregation in sensor
networks. In Proceedings of the 1st ACM Conference on Embedded Networked Sensor Systems

(SenSys’03).

RICHARDSON, M., AGRAWAL, R., AND DOMINGOS, P. 2003. Trust management for the Semantic
Web. In Proceedings of the 2nd International Semantic Web Conference.

SULLIVAN, G. F. 1988. An o(t3 + |e|) fault identification algorithm for diagnosable systems. IEEE

Trans. Comput. 37, 4.

VAZIRANI, V. V., Ed. 2001. Approximation Algorithms. Springer-Verlag, Berlin, Germany.

XIONG, L. AND LIU, L. 2002. Building trust in decentralized peer-to-peer electronic communities.
In Proceedings of the 5th International Conference on Electronic Commerce Research (ICECR).

YE, F., LUO, H., LU, S., AND ZHANG, L. 2004. Statistical en-route filtering of injected false data
in sensor networks. In Proceedings of the Annual Joint Conference of the IEEE Computer and

Communication Societies (INFOCOM).

YU, B. AND SINGH, M. P. 2002. An evidential model of distributed reputation management. In
Proceedings of the 1st International Joint Conference on Autonomous Agents and MultiAgent

Systems (AAMAS).

ZHANG, Q., YU, T., AND NING, P. 2006. A framework for identifying compromised nodes in sensor
networks. In Proceedings of the 2nd IEEE Communications Society/CreateNet International

Conference on Security and Privacy in Communication Networks (SecureComm’06).

ZHU, S., SETIA, S., JAJODIA, S., AND NING, P. 2004. An interleaved hop-by-hop authentication
scheme for filtering of injected false data in sensor networks. In Proceedings of the IEEE Sym-

posium on Security and Privacy, 260–272.

Received February 2007; revised August 2007; accepted September 2007

ACM Transactions on Information and Systems Security, Vol. 11, No. 3, Article 12, Pub. date: March 2008.

